抗体医薬の最適化を支援するAIツール(AI tool helps optimize antibody medicines)

ad

2023-09-11 ミシガン大学

◆ミシガン大学の研究チームが開発した機械学習アルゴリズムは、抗体治療がパーキンソン病、アルツハイマー病、大腸がんなどの疾患と戦うために免疫システムを活性化できるが、抗体が非標的分子と結合しやすくなる問題を特定できる。これにより、抗体の問題を修正でき、新しい問題を引き起こすことなく治療効果を向上させることが可能となる。
◆このモデルは既存の抗体だけでなく、新しい抗体やまだ作成されていない抗体にも適用可能で、薬の開発を効率化するために活用されています。

<関連情報>

解釈可能な機械学習により、自己会合と非特異的結合を低減する治療用抗体の最適化 Optimization of therapeutic antibodies for reduced self-association and non-specific binding via interpretable machine learning

Emily K. Makowski,Tiexin Wang,Jennifer M. Zupancic,Jie Huang,Lina Wu,John S. Schardt,Anne S. De Groot,Stephanie L. Elkins,William D. Martin & Peter M. Tessier
Nature Biomedical Engineering  Published:04 September 2023
DOI:https://doi.org/10.1038/s41551-023-01074-6

抗体医薬の最適化を支援するAIツール(AI tool helps optimize antibody medicines)

Abstract

Antibody development, delivery, and efficacy are influenced by antibody-antigen affinity interactions, off-target interactions that reduce antibody bioavailability and pharmacokinetics, and repulsive self-interactions that increase the stability of concentrated antibody formulations and reduce their corresponding viscosity. Yet identifying antibody variants with optimal combinations of these three types of interactions is challenging. Here we show that interpretable machine-learning classifiers, leveraging antibody structural features descriptive of their variable regions and trained on experimental data for a panel of 80 clinical-stage monoclonal antibodies, can identify antibodies with optimal combinations of low off-target binding in a common physiological-solution condition and low self-association in a common antibody-formulation condition. For three clinical-stage antibodies with suboptimal combinations of off-target binding and self-association, the classifiers predicted variable-region mutations that optimized non-affinity interactions while maintaining high-affinity antibody-antigen interactions. Interpretable machine-learning models may facilitate the optimization of antibody candidates for therapeutic applications.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました