ドーパミン、オピオイド、その他の神経細胞シグナルが使用する経路を照らす化学ツール(Chemical tool illuminates pathways used by dopamine, opioids and other neuronal signals)

ad

2024-04-23 ミシガン大学

ドーパミン、オピオイド、その他の神経細胞シグナルが使用する経路を照らす化学ツール(Chemical tool illuminates pathways used by dopamine, opioids and other neuronal signals)A slice of the mouse brainstem demonstrates the detection of morphine (green) and the expression of the SPOTIT sensor (magenta). Image credit: Noam Gannot and Peng Li, U-M Sciences Institute

ミシガン大学の研究者たちは、ドーパミンやエピネフリンなどの化学物質がニューロンとどのように相互作用するかをよりよく理解するための新しいツールを開発しました。このツールはGPCR(Gタンパク質共役受容体)と相互作用する複数の化学物質を検出し、その反応を脳全体で高解像度で視覚化することができます。これにより、特定のニューロンに到達し作用するシグナル分子の動きを詳細に追跡することが可能になります。また、GPCRは多くの生物学的機能に関与しており、FDA承認の薬の三分の一以上がGPCRを標的としています。研究は「米国科学アカデミー紀要」に掲載されました。

<関連情報>

Gタンパク質共役型受容体アゴニストマッピングのための一本鎖蛍光インテグレーター Single-chain fluorescent integrators for mapping G-protein-coupled receptor agonists

Kayla Kroning, Noam Gannot, Xingyu Li, +7, and Wenjing Wang
Proceedings of the National Academy of Sciences  Published:April 22, 2024
DOI:https://doi.org/10.1073/pnas.2307090121

Significance

A comprehensive understanding of G protein-coupled receptor (GPCR) signaling in the brain requires brain-wide detection of their endogenous and synthetic agonists at high spatial resolution. We developed a platform called Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT) for all GPCRs, abbreviated as SPOTall. SPOTall can detect GPCR agonists and leave a fluorescent mark on cells for whole brain analysis at cellular resolution. We demonstrated SPOTall with three GPCRs and applied the beta 2-adrenergic receptor-SPOTall sensor in mouse brains to detect exogenously administered isoproterenol and epinephrine. Finally, we used mu-opioid receptor-SPOTIT2 in mouse brains to detect morphine binding. SPOTIT and SPOTall potentially can be applied for brain-wide detection of GPCR agonists at cellular resolution in mouse models.

Abstract

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました