自動機械学習ロボットが遺伝学研究の新たな可能性を引き出す(Automated machine learning robot unlocks new potential for genetics research)

ad

2024-04-24 ミネソタ大学

ミネソタ大学ツインシティーズ校の研究者たちは、遺伝学研究で使用される複雑なマイクロインジェクションプロセスを完全に自動化するロボットを構築しました。この自動化ロボットは、果物ハエやゼブラフィッシュの胚の遺伝操作を可能にし、従来の手法では不可能だった新しい大規模な遺伝実験を容易に実施できます。この技術は研究所の時間と費用を節約し、広範な遺伝実験の可能性を拡大します。この研究は「GENETICS」誌の表紙に掲載されました。

<関連情報>

マシンビジョン誘導型胚マイクロインジェクションロボットによる多細胞生物のハイスループット遺伝子操作 High-throughput genetic manipulation of multicellular organisms using a machine-vision guided embryonic microinjection robot

Andrew D Alegria, Amey S Joshi, Jorge Blanco Mendana, Kanav Khosla, Kieran T Smith, Benjamin Auch, Margaret Donovan, John Bischof, Daryl M Gohl, Suhasa B Kodandaramaiah
Genetics  Published:19 February 2024
DOI:https://doi.org/10.1093/genetics/iyae025

Robot hardware and operation: a, b) (i) DSLR camera, (ii) microinjector controller, (iii) inclined microscopes, and (iv) XYZ stage. c) Automated microinjection procedure for Drosophila and zebrafish. (I, i) Macroscale imaging of the agar plate using the DSLR camera, (I, ii) annotating all individual embryos from macroscale image, (I, iii) training a model using the annotated data, (I, iv) imaging embryos and micropipette tip using the inclined microscopes, (I, v) annotating images acquired from the inclined microscope, and (I, vi) train a model using the annotated data. (II, i) Macroscale imaging of the agar plate using the DSLR camera, (II, ii) using the trained model for the agar plate to detect individual embryos, (II, iii) imaging current embryo and micropipette tip using the inclined microscopes, (II, iv) using the trained model on data acquired by the inclined microscopes, detecting the micropipette tip and microinjection point on the embryo, (II, v) microinjecting the embryo with a solution in the micropipette.

Abstract

Microinjection is a technique used for transgenesis, mutagenesis, cell labeling, cryopreservation, and in vitro fertilization in multiple single and multicellular organisms. Microinjection requires specialized skills and involves rate-limiting and labor-intensive preparatory steps. Here, we constructed a machine-vision guided generalized robot that fully automates the process of microinjection in fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) embryos. The robot uses machine learning models trained to detect embryos in images of agar plates and identify specific anatomical locations within each embryo in 3D space using dual view microscopes. The robot then serially performs a microinjection in each detected embryo. We constructed and used three such robots to automatically microinject tens of thousands of Drosophila and zebrafish embryos. We systematically optimized robotic microinjection for each species and performed routine transgenesis with proficiency comparable to highly skilled human practitioners while achieving up to 4× increases in microinjection throughput in Drosophila. The robot was utilized to microinject pools of over 20,000 uniquely barcoded plasmids into 1,713 embryos in 2 days to rapidly generate more than 400 unique transgenic Drosophila lines. This experiment enabled a novel measurement of the number of independent germline integration events per successfully injected embryo. Finally, we showed that robotic microinjection of cryoprotective agents in zebrafish embryos significantly improves vitrification rates and survival of cryopreserved embryos post-thaw as compared to manual microinjection. We anticipate that the robot can be used to carry out microinjection for genome-wide manipulation and cryopreservation at scale in a wide range of organisms.

ad
細胞遺伝子工学
ad
ad


Follow
ad
タイトルとURLをコピーしました