肝疾患の診断と治療の改善にディープラーニング技術を活用(Using Deep Learning Techniques to Improve Liver Disease Diagnosis and Treatment)

ad

2024-07-15 ジョージア工科大学

米国で1億人以上が肝疾患を抱えており、その多くは脂肪肝が未診断です。肝疾患は慢性的なものであり、早期発見が重要です。通常、異常な血液検査後に生検が行われますが、侵襲的でリスクがあります。非侵襲的なマグネティックレゾナンスエラストグラフィー(MRE)は、肝組織の硬さを評価するために使用されますが、失敗することがあります。ジョージW.ウッドラフ機械工学部のJun Ueda教授と博士課程のHeriberto Nievesが、MRE画像の品質を自動で評価する深層学習技術を開発し、92%の精度を達成しました。この技術により、再スキャンの必要性が減り、画像品質管理が効率化されます。この研究は、他の臓器や病状の監視にも応用可能です。

<関連情報>

肝臓MRエラストグラフィのディープラーニングによる自動品質管理: 初期結果 Deep Learning-Enabled Automated Quality Control for Liver MR Elastography: Initial Results

Heriberto A. Nieves-Vazquez BS, Efe Ozkaya PhD, Waiman Meinhold PhD, Amine Geahchan MD, Octavia Bane PhD, Jun Ueda PhD, Bachir Taouli MD, MHA
Journal of Magnetic Resonance Imaging  Published: 22 June 2024
DOI:https://doi.org/10.1002/jmri.29490

肝疾患の診断と治療の改善にディープラーニング技術を活用(Using Deep Learning Techniques to Improve Liver Disease Diagnosis and Treatment)

Abstract

Background
Several factors can impair image quality and reliability of liver magnetic resonance elastography (MRE), such as inadequate driver positioning, insufficient wave propagation and patient-related factors.

Purpose
To report initial results on automatic classification of liver MRE image quality using various deep learning (DL) architectures.

Study Type
Retrospective, single center, IRB-approved human study.

Population
Ninety patients (male = 51, mean age 52.8 ± 14.1 years).

Field Strengths/Sequences
1.5 T and 3 T MRI, 2D GRE, and 2D SE-EPI.

Assessment
The curated dataset was comprised of 914 slices obtained from 149 MRE exams in 90 patients. Two independent observers examined the confidence map overlaid elastograms (CMOEs) for liver stiffness measurement and assigned a quality score (non-diagnostic vs. diagnostic) for each slice. Several DL architectures (ResNet18, ResNet34, ResNet50, SqueezeNet, and MobileNetV2) for binary quality classification of individual CMOE slice inputs were evaluated, using an 8-fold stratified cross-validation (800 slices) and a test dataset (114 slices). A majority vote ensemble combining the models’ predictions of the highest-performing architecture was evaluated.

Statistical Test
The inter-observer agreement and the agreement between DL models and one observer were assessed using Cohen’s unweighted Kappa coefficient. Accuracy, precision, and recall of the cross-validation and the ensemble were calculated for the test dataset.

Results
The average accuracy across the eight models trained using each architecture ranged from 0.692 to 0.851 for the test dataset. The ensemble of the best performing architecture (SqueezeNet) yielded an accuracy of 0.921. The inter-observer agreement was excellent (Kappa 0.896 [95% CI 0.845–0.947]). The agreement between observer 1 and the predictions of each SqueezeNet model was slight to almost perfect (Kappa range: 0.197–0.831) and almost perfect for the ensemble (Kappa: 0.833).

Conclusion
Our initial study demonstrates an automated DL-based approach for classifying liver 2D MRE diagnostic quality with an average accuracy of 0.851 (range 0.675–0.921) across the SqueezeNet models.

Evidence Level
4

Technical Efficacy
Stage 1

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました