進化論に基づいて訓練されたAIが創薬や科学的発見につながるタンパク質を開発(AI Trained on Evolution’s Playbook Develops Proteins That Spur Drug and Scientific Discovery)

ad

2024-09-25 テキサス大学オースチン校(UT Austin)

テキサス大学オースティン校の研究チームが開発したAIモデル「EvoRank」は、進化の過程を利用して新たなタンパク質を設計し、医薬品やワクチンの開発を支援します。このモデルは、自然の進化が生成したタンパク質の変異パターンを学習し、効果的な治療法やバイオテクノロジーの設計に役立つ変異を特定します。EvoRankはタンパク質の改変に必要な時間とコストを削減し、より安全で効果的な治療法の開発を可能にします。

<関連情報>

安定性オラクル:安定化変異を同定するための構造ベースのグラフ変換フレームワーク Stability Oracle: a structure-based graph-transformer framework for identifying stabilizing mutations

Daniel J. Diaz,Chengyue Gong,Jeffrey Ouyang-Zhang,James M. Loy,Jordan Wells,David Yang,Andrew D. Ellington,Alexandros G. Dimakis & Adam R. Klivans
Nature Communications  Published:23 July 2024
DOI:https://doi.org/10.1038/s41467-024-49780-2

進化論に基づいて訓練されたAIが創薬や科学的発見につながるタンパク質を開発(AI Trained on Evolution’s Playbook Develops Proteins That Spur Drug and Scientific Discovery)

Abstract

Engineering stabilized proteins is a fundamental challenge in the development of industrial and pharmaceutical biotechnologies. We present Stability Oracle: a structure-based graph-transformer framework that achieves SOTA performance on accurately identifying thermodynamically stabilizing mutations. Our framework introduces several innovations to overcome well-known challenges in data scarcity and bias, generalization, and computation time, such as: Thermodynamic Permutations for data augmentation, structural amino acid embeddings to model a mutation with a single structure, a protein structure-specific attention-bias mechanism that makes transformers a viable alternative to graph neural networks. We provide training/test splits that mitigate data leakage and ensure proper model evaluation. Furthermore, to examine our data engineering contributions, we fine-tune ESM2 representations (Prostata-IFML) and achieve SOTA for sequence-based models. Notably, Stability Oracle outperforms Prostata-IFML even though it was pretrained on 2000X less proteins and has 548X less parameters. Our framework establishes a path for fine-tuning structure-based transformers to virtually any phenotype, a necessary task for accelerating the development of protein-based biotechnologies.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました