スーパーコンピューターで計算された膨らみ: 細胞が細胞内管系を消化する仕組み(Bulges calculated in the supercomputer: How cells digest their internal canal system)

ad

2024-11-12 ゲーテ大学

スーパーコンピューターで計算された膨らみ: 細胞が細胞内管系を消化する仕組み(Bulges calculated in the supercomputer: How cells digest their internal canal system)
Detail of a membrane bubble. Image: Bhaskara Group, Goethe University Frankfurt

フランクフルト大学の研究者は、細胞内の小胞体(ER)の膜がどのように膨らみ、分離されるかをスーパーコンピュータを用いたシミュレーションで解明しました。ERは細胞内のカルシウムや炭水化物の貯蔵、ホルモン合成などに関与する管状構造で、必要に応じてその一部が分解されます。この過程では、ER膜に特定のタンパク質が関与し、膜の湾曲を引き起こして膨らみを形成し、最終的に小胞として分離されます。研究チームは、ER膜に存在するERファジー受容体と呼ばれるタンパク質が、膜の湾曲と膨らみの形成に重要な役割を果たすことを明らかにしました。これらの受容体は、膜にアンカーとして埋め込まれた部分と、膜表面から伸びる柔軟な「触手」のような部分で構成されています。シミュレーションの結果、これらの「触手」が膜の湾曲を促進し、膨らみの形成を加速することが示されました。この研究は、細胞が内部の構造をどのように調節し、不要な部分を除去するかの理解を深めるものです。

<関連情報>

選択的小胞体貪食を増強する膜リモデリングを増幅する本質的に無秩序な領域 Intrinsically disordered region amplifies membrane remodeling to augment selective ER-phagy

Sergio Alejandro Poveda-Cuevas, Kateryna Lohachova, Borna Markusic, +2, and Ramachandra M. Bhaskara
Proceedings of the National Academy of Sciences  Published:October 25, 2024
DOI:https://doi.org/10.1073/pnas.2408071121

Significance

The extent of intrinsic disorder in membrane remodeling remains unclear. Here, we focus on the C-terminal disordered region of FAM134B, a protein involved in the endoplasmic reticulum (ER) recycling process. Through advanced computer modeling and extensive simulations, we show how membrane-anchored disordered protein segments exhibit different ensemble properties. This context-dependent behavior is sequence-encoded and shared among other proteins involved in ER-phagy. Membrane anchoring alone enables disordered regions to sense and influence local membrane shape, and when combined with other membrane-shaping elements, they accelerate large-scale membrane remodeling. These insights deepen our understanding of disordered segments and how they influence membrane shapes.

Abstract

Intrinsically disordered regions (IDRs) play a pivotal role in organellar remodeling. They transduce signals across membranes, scaffold signaling complexes, and mediate vesicular traffic. Their functions are regulated by constraining conformational ensembles through specific intra- and intermolecular interactions, physical tethering, and posttranslational modifications. The endoplasmic reticulum (ER)-phagy receptor FAM134B/RETREG1, known for its reticulon homology domain (RHD), includes a substantial C-terminal IDR housing the LC3 interacting motif. Beyond engaging the autophagic machinery, the function of the FAM134B-IDR is unclear. Here, we investigate the characteristics of the FAM134B-IDR by extensive modeling and molecular dynamics simulations. We present detailed structural models for the IDR, mapping its conformational landscape in solution and membrane-anchored configurations. Our analysis reveals that depending on the membrane anchor, the IDRs collapse onto the membrane and induce positive membrane curvature to varying degrees. The charge patterns underlying this Janus-like behavior are conserved across other ER-phagy receptors. We found that IDRs alone are sufficient to sense curvature. When combined with RHDs, they intensify membrane remodeling and drive efficient protein clustering, leading to faster budding, thereby amplifying RHD remodeling functions. Our simulations provide a perspective on IDRs of FAM134B, their Janus-like membrane interactions, and the resulting modulatory functions during large-scale ER remodeling.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました