AIが心電図を解析し、女性の心疾患リスクを特定 (AI model reads ECGs to identify female patients at higher risk of heart disease)

ad

2025-02-25 インペリアル・カレッジ・ロンドン(ICL)

インペリアル・カレッジ・ロンドンの研究チームは、心電図(ECG)データを解析して、女性の心疾患リスクを特定する新しいAIモデルを開発しました。このアルゴリズムは、女性患者のECGパターンを詳細に分析し、心不全や心筋梗塞のリスクが高い女性を早期に特定することが可能です。研究では、180,000人以上の患者から得られた100万件以上のECGデータを用いて、性別ごとの典型的なECGパターンと個々の患者のECGを比較するスコアを作成しました。その結果、男性的なECGパターンを持つ女性は、心臓の構造や筋肉量に特徴があり、心血管疾患のリスクが高いことが判明しました。このAIモデルは、女性の心疾患リスクをより正確に評価し、早期の治療介入を可能にすることで、性別による診断や治療の差を縮小することが期待されています。

<関連情報>

人工知能を用いた心電図検査による性差による心血管リスクの連続性の同定:レトロスペクティブ・コホート研究 Artificial intelligence-enhanced electrocardiography for the identification of a sex-related cardiovascular risk continuum: a retrospective cohort study

Arunashis Sau, PhD∙ Ewa Sieliwonczyk, PhD∙ Konstantinos Patlatzoglou, PhD∙ Libor Pastika, MBBS∙ Kathryn A McGurk, PhD∙ Antônio H Ribeiro, PhD∙ et al.
The Lancet Digital Health  Published: March 2025
DOI:https://doi.org/10.1016/j.landig.2024.12.003

AIが心電図を解析し、女性の心疾患リスクを特定 (AI model reads ECGs to identify female patients at higher risk of heart disease)

Summary

Background
Females are typically underserved in cardiovascular medicine. The use of sex as a dichotomous variable for risk stratification fails to capture the heterogeneity of risk within each sex. We aimed to develop an artificial intelligence-enhanced electrocardiography (AI-ECG) model to investigate sex-specific cardiovascular risk.

Methods
In this retrospective cohort study, we trained a convolutional neural network to classify sex using the 12-lead electrocardiogram (ECG). The Beth Israel Deaconess Medical Center (BIDMC) secondary care dataset, comprising data from individuals who had clinically indicated ECGs performed in a hospital setting in Boston, MA, USA collected between May, 2000, and March, 2023, was the derivation cohort (1 163 401 ECGs). 50% of this dataset was used for model training, 10% for validation, and 40% for testing. External validation was performed using the UK Biobank cohort, comprising data from volunteers aged 40–69 years at the time of enrolment in 2006–10 (42 386 ECGs). We examined the difference between AI-ECG-predicted sex (continuous) and biological sex (dichotomous), termed sex discordance score.

Findings
AI-ECG accurately identified sex (area under the receiver operating characteristic 0·943 [95% CI 0·942–0·943] for BIDMC and 0·971 [0·969–0·972] for the UK Biobank). In BIDMC outpatients with normal ECGs, an increased sex discordance score was associated with covariate-adjusted increased risk of cardiovascular death in females (hazard ratio [HR] 1·78 [95% CI 1·18–2·70], p=0·006) but not males (1·00 [0·63–1·58], p=0·996). In the UK Biobank cohort, the same pattern was seen (HR 1·33 [95% CI 1·06–1·68] for females, p=0·015; 0·98 [0·80–1·20] for males, p=0·854). Females with a higher sex discordance score were more likely to have future heart failure or myocardial infarction in the BIDMC cohort and had more male cardiac (increased left ventricular mass and chamber volumes) and non-cardiac phenotypes (increased muscle mass and reduced body fat percentage) in both cohorts.

Interpretation
Sex discordance score is a novel AI-ECG biomarker capable of identifying females with disproportionately elevated cardiovascular risk. AI-ECG has the potential to identify female patients who could benefit from enhanced risk factor modification or surveillance.

Funding
British Heart Foundation.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました