光化学反応を利用した医療用バイオマテリアルの新しい制御方法を開発 (Light Chemistry Could Lead to Better Medicines)

ad

2025-03-13 スウェーデン王立工科大学(KTH)

スウェーデン王立工科大学(KTH)、カロリンスカ研究所、ウプサラ大学の研究者は、光化学と加水分解を組み合わせた新技術を開発し、医療用バイオマテリアルの機能を精密に制御可能にした。光化学的基をポリマーに結合させた後、紫外線(UV)や近赤外線(NIR)を利用してハイドロゲル内のタンパク質放出を制御。これにより、細胞の反応を詳細に観察でき、疾患メカニズムや薬剤作用の理解が向上。動物実験の削減にも貢献すると期待される。

<関連情報>

3Dフォトパターニングと相補的不安定結合化学によるハイドロゲル中の分解性の領域特異的制御を利用したタンパク質の持続的放出 Sustained Release of Proteins Using Region-Specific Tunable Degradability in Hydrogels through 3D Photopatterning and Complimentary Labile Bond Chemistry

Tove Kivijärvi, Carmine P. Cerrato, Taha Behroozi Kohlan, Paul O’Callaghan, Johan Kreuger, Marie Arsenian-Henriksson, Anna Finne-Wistrand
Advanced Functional Materials  Published: 19 January 2025
DOI:https://doi.org/10.1002/adfm.202419935

光化学反応を利用した医療用バイオマテリアルの新しい制御方法を開発 (Light Chemistry Could Lead to Better Medicines)

Abstract

Light-triggered chemical reactions have demonstrated great potential for advanced cell guidance, on-demand release of therapeutics, and complex patterning in four dimensions. Current strategies rely on the cleavage of a light sensitive bond, while several protein and therapeutic release systems are designed using a hydrolytically labile bond. To bridge the gap between externally controlled light regulated transformations and intrinsically controlled hydrolytically labile bonds, a new family of light-triggered photocages that upon conjugation to target proteins form more or less hydrolytically (un)stable imine, hydrazone, and oxime bonds is reported. The three photocages follow a dose-dependent relationship using ultraviolet and near-infrared radiation and the one- and two-photon uncaging can be controlled in discrete volumes down to at least 10 µm precision. Upon photoirradiation, the exposed latent amino-, hydrazino-, and hydroxylamino-moieties readily react with a variety of proteins, and complimentary sustained release can be achieved. The relative release rate of imine-, hydrazone-, and oxime-bound proteins enable control over cell fate on hydrogels using two neuroblastoma cell lines. These results are anticipated to open new avenues for advanced materials where region-specifical degradability is central, such as for complex protein photopatterns, cell-guided hydrogels, and for programmable materials using photomediated dynamic covalent chemistry and photoclick chemistry.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました