多機能AIモデルで肺がん検診を向上(Multimodal Multitask Foundation Model Enhances Lung Cancer Screening and Beyond)

ad

2025-03-24 レンセラー工科大学(RPI)

レンセラー工科大学(RPI)、ウェイクフォレスト大学(WFU)、マサチューセッツ総合病院(MGH)の研究チームは、低線量CTスキャンを用いた肺がんスクリーニングの精度と効率を向上させるため、マルチモーダル・マルチタスクの基盤モデルを開発しました。このAIモデルは、CT画像、放射線レポート、患者のリスク要因など複数のデータソースを統合し、肺がんリスク予測を20%、心血管リスク予測を10%向上させることが示されています。​

<関連情報>

肺がん検診のための医療用マルチモーダル・マルチタスク基盤モデル Medical multimodal multitask foundation model for lung cancer screening

Chuang Niu,Qing Lyu,Christopher D. Carothers,Parisa Kaviani,Josh Tan,Pingkun Yan,Mannudeep K. Kalra,Christopher T. Whitlow &Ge Wang
Nature Communications  Published:11 February 2025
DOI:https://doi.org/10.1038/s41467-025-56822-w

多機能AIモデルで肺がん検診を向上(Multimodal Multitask Foundation Model Enhances Lung Cancer Screening and Beyond)

Abstract

Lung cancer screening (LCS) reduces mortality and involves vast multimodal data such as text, tables, and images. Fully mining such big data requires multitasking; otherwise, occult but important features may be overlooked, adversely affecting clinical management and healthcare quality. Here we propose a medical multimodal-multitask foundation model (M3FM) for three-dimensional low-dose computed tomography (CT) LCS. After curating a multimodal multitask dataset of 49 clinical data types, 163,725 chest CT series, and 17 tasks involved in LCS, we develop a scalable multimodal question-answering model architecture for synergistic multimodal multitasking. M3FM consistently outperforms the state-of-the-art models, improving lung cancer risk and cardiovascular disease mortality risk prediction by up to 20% and 10% respectively. M3FM processes multiscale high-dimensional images, handles various combinations of multimodal data, identifies informative data elements, and adapts to out-of-distribution tasks with minimal data. In this work, we show that M3FM advances various LCS tasks through large-scale multimodal and multitask learning.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました