がんの未知なる特徴をAIが発見~がんの画像から、再発に関わる新たな知識を自力で獲得~

ad
ad

2019-12-18 理化学研究所,日本医科大学,日本医療研究開発機構

理化学研究所(理研)革新知能統合研究センター病理情報学チームの山本陽一朗チームリーダー、日本医科大学泌尿器科の木村剛准教授らの共同研究グループは、医師の診断情報が付いていない病理画像から、がんに関わる知識をAIが自力で獲得する技術を開発し、がんの再発の診断精度を上げる新たな特徴を見つけることに成功しました。

本研究成果は、手術後の高精度ながんの再発予測法として、個々に合った治療選択に生かせるとともに、画像から新たな知識を獲得するための自動解析手法として役立ちます。さらに、ブラックボックスといわれているAIの解析根拠をひも解く一歩として、医療において安心して使用できるAIの実現に貢献すると期待できます。

今回、共同研究グループは、1枚あたり100億画素以上の前立腺病理画像から、AIが画像上のがんの特徴を、人に教わることなく自動で取得し、それを人間が理解できる情報として出力する技術の開発に成功しました。AIが見つけた要素には、今日までに世界中で使われているがんの診断基準のほか、専門家も気づいていなかったがん領域以外の部位の特徴が含まれていました。これらの要素の再発予測性能を確かめるために、三つの大学病院の15,000枚以上の病理画像(AI学習用の分割画像にすると約960億枚に相当)で検証したところ、現在の診断基準よりも高い精度で再発予測ができました。加えて、病理医の診断と合わせて使うことで、予測精度をさらに上げることができました。

本研究は、英国のオンライン科学雑誌『Nature Communications』(12月18日付)に掲載されます。

※共同研究チーム
理化学研究所 革新知能統合研究センター
目的指向基盤技術研究グループ
病理情報学チーム
チームリーダー 山本 陽一朗(やまもと よういちろう)
技師 沼田 康志(ぬまた やすし)
技師 森川 啓(もりかわ ひろむ)
技師 堤 光太郎(つつみ こうたろう)
客員主管研究員 福本 学(ふくもと まなぶ)
客員研究員 赤塚 純(あかつか じゅん)(日本医科大学 泌尿器科)
遺伝統計学チーム
チームリーダー 田宮 元(たみや げん)
研究員 植木 優夫(うえき まさお)
副センター長 上田 修功(うえだ なおのり)
日本医科大学
泌尿器科
教授 近藤 幸尋(こんどう ゆきひろ)
准教授 木村 剛(きむら ごう)
解析人体病理学
教授 清水 章(しみず あきら)
愛知医科大学病院
病理診断科
教授 都築 豊徳(つづき とよのり)
助教 高原 大志(たかはら たいし)
助教 露木 琢司(つゆき たくじ)
聖マリアンナ医科大学
腎泌尿器外科
講師 中澤 龍斗(なかざわ りゅうと)
北里大学 北里研究所病院
病理診断科
教授 前田 一郎(まえだ いちろう)
信州大学 医学部
病理組織学教室
教授 菅野 祐幸(かんの ひろゆき)
社会医療法人栗山会 飯田病院
副病院長 土屋 眞一(つちや しんいち)
※研究支援
本研究は、日本医療研究開発機構(AMED)「Medical Artsの創成に関する研究(外科、がん、看護、リハビリ等の新たな医療技術やソフトウェアの開発)」の研究課題「機序の異なる人工知能の多重解析による癌コンパニオン診断システムの開発(研究代表者:山本陽一朗)」による支援を受けました。
背景

人工知能(Artificial Intelligence, AI)の技術は、翻訳から自動運転に至るまでさまざまな分野で利用されています。そして近年では、AIの持つ高い可能性を医療に応用するための研究が盛んに行われています。

しかし、現在のAI技術の主流であるディープラーニング(深層学習)[1]では、学習にビッグデータを必要とするため、医師の診断情報が付いた大量の医療画像をどのように集めるかが、実用化に向けた課題となっていました。

また、AIにおける解析根拠はブラックボックスだといわれています。というのは、AIの解析根拠はニューラルネットワーク[2]上の無数の重みとして保存されることから、人間は数学的なメカニズムは理解できても、AIによる解析根拠を直接的に理解することが困難であるためです。医療への応用には、AIの解析根拠が重要視されており、現存する医学知識を上回る新知見の獲得のためにも、病理画像のように豊富な情報を含むデータから、機械学習[3]を通して「人間が理解できる情報」を自動で取得する技術が求められていました。

研究手法と成果

共同研究グループは、複数のディープラーニングと非階層型クラスタリング[4]を用いることで、病理画像から人間が理解できる情報を自動で取得する新たなAI技術の開発に成功しました。今までは、医師が教えた診断をAIが学習する「教師あり学習[5]」と呼ばれる手法が医療分野では主に使用されてきましたが、教師以上の分類はできないという限界がありました。本研究では医師の診断を必要としない「教師なし学習[6]」により獲得した特徴を、人が理解できるように変換し、再発期間のみを用いた最適な重み付けをAIに行わせることで、これまで不可能であったがんの未知なる情報の獲得を目指しました(図1)。

この新しい技術を、医師の診断情報が付いていない100億画素を超える全包埋・全割[7]した前立腺の病理画像(AI学習用の分割画像にすると、合計約11億枚に相当)に対して適用したところ、病理画像と予後情報のみから、詳細に分類されたがんの情報をAIに自動で抽出させることに成功しました(図2)。このAIが作成した分類には、現在世界中で使用されているがん分類(グリソンスコア[8])が含まれており、さらに、これまで専門家も気づいていなかった「がん領域以外の間質[9]の変化」も、がんの再発の診断精度を上げる特徴として読み取られていました。

なお、AIにより見つけられた病理学的特徴は論文の中で、AIが作成した初めての病理画像アトラス[10]として閲覧できます。

次に、AIが見つけたこれらのがんの特徴が再発予測に役立つかを確認するため、日本医科大学病院の20年間分の13,188枚の前立腺の病理画像(AI学習用の分割画像にすると約860億枚に相当)を用いて、がんの予後予測の検証を行いました。その結果、現在世界中で使用されている前立腺がんの診断基準(AUC[11] = 0.744)よりも高い精度(AUC = 0.820)で再発予測ができることが分かりました(図3)。

タイトルとURLをコピーしました