脳のミトコンドリア地図から、より多くのエネルギーが供給される認知能力の高い領域が明らかになる(Atlas of Brain’s Mitochondria Reveals High Cognition Areas Supplied with More Energy)

ad

2025-03-26 コロンビア大学

コロンビア大学の研究者らは、脳内ミトコンドリアの初のアトラス「MitoBrainMap」を作成しました。この研究では、凍結保存された人間の脳を3mm³のキューブに分割し、各キューブ内のミトコンドリア密度とエネルギー変換能力を分析しました。その結果、高度な認知機能を担う新しい脳領域ほど、ミトコンドリアの密度が高く、エネルギー供給が豊富であることが明らかになりました。この成果は、脳の健康や神経変性疾患、精神疾患の起源を理解し、新たな治療法の開発に寄与する可能性があります。

<関連情報>

ミトコンドリア呼吸能力と多様性のヒト脳地図 A human brain map of mitochondrial respiratory capacity and diversity

Eugene V. Mosharov,Ayelet M. Rosenberg,Anna S. Monzel,Corey A. Osto,Linsey Stiles,Gorazd B. Rosoklija,Andrew J. Dwork,Snehal Bindra,Alex Junker,Ya Zhang,Masashi Fujita,Madeline B. Mariani,Mihran Bakalian,David Sulzer,Philip L. De Jager,Vilas Menon,Orian S. Shirihai,J. John Mann,Mark D. Underwood,Maura Boldrini,Michel Thiebaut de Schotten & Martin Picard
Nature  Published:26 March 2025
DOI:https://doi.org/10.1038/s41586-025-08740-6

脳のミトコンドリア地図から、より多くのエネルギーが供給される認知能力の高い領域が明らかになる(Atlas of Brain’s Mitochondria Reveals High Cognition Areas Supplied with More Energy)

Abstract

Mitochondrial oxidative phosphorylation (OXPHOS) powers brain activity, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders. To understand the basis of brain activity and behaviour, there is a need to define the molecular energetic landscape of the brain. Here, to bridge the scale gap between cognitive neuroscience and cell biology, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3 × 3 × 3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes, including OXPHOS enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains diverse mitochondrial phenotypes driven by both topology and cell types. Compared with white matter, grey matter contains >50% more mitochondria. Moreover, the mitochondria in grey matter are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backwards linear regression model that integrates several neuroimaging modalities to generate a brain-wide map of mitochondrial distribution and specialization. This model predicted mitochondrial characteristics in an independent brain region of the same donor brain. This approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain function. This resource also relates to neuroimaging data and defines the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders. All data are available at http://humanmitobrainmap.bcblab.com.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました