室温で外界分子に応答して光る人工細胞を創製

ad

2025-04-02 愛媛大学

愛媛大学プロテオサイエンスセンターの研究チームは、外部分子に応答して発光する人工細胞を室温で作製することに成功しました。この人工細胞は、細胞膜に埋め込まれた受容体が特定の分子を検出すると、内部の発光タンパク質が反応し、光を放つ仕組みです。従来、高温環境でのみ機能する人工細胞が多かった中、今回の成果は生体に近い温度での応用を可能にし、バイオセンサーやドラッグデリバリーシステムなどの分野での活用が期待されます。

<関連情報>

モジュール式かつロバストな人工リボスイッチを有する真核人工細胞を用いた複数標的分子の室温同時検出 Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches

Hajime Takahashi,Yuri Ikemoto,and Atsushi Ogawa
ACS Synthetic Biology  Published: December 27, 2024
DOI:https://doi.org/10.1021/acssynbio.4c00696

Abstract

室温で外界分子に応答して光る人工細胞を創製

Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました