3Dプリンターで生体組織モデルを作製(CHIPS off the old block)

ad

2025-04-25 ピッツバーグ大学​

ピッツバーグ大学スワンソン工学部の研究チームは、3Dプリンティング技術を用いて、体内の自然な構造を模倣した足場(スキャフォールド)を設計し、細胞が成長・相互作用・組織形成するための手がかりを提供する新しい方法を開発しました。この技術は、再生医療やバイオエンジニアリング分野において、より機能的な人工組織の作製を可能にし、将来的には臓器移植の代替手段となる可能性があります。

<関連情報>

完全生体組織システム工学のためのコラーゲンベースの高解像度内部灌流可能足場の3Dバイオプリンティング 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems

Daniel J. Shiwarski, Andrew R. Hudson, Joshua W. Tashman, Ezgi Bakirci, […], and Adam W. Feinberg
Science Advances  Published:23 Apr 2025
DOI:https://doi.org/10.1126/sciadv.adu5905

3Dプリンターで生体組織モデルを作製(CHIPS off the old block)

Abstract

Organ-on-a-chip and microfluidic systems have improved the translational relevance of in vitro systems; however, current manufacturing approaches impart limitations on materials selection, non-native mechanical properties, geometric complexity, and cell-driven remodeling into functional tissues. Here, we three-dimensionally (3D) bioprint extracellular matrix (ECM) and cells into collagen-based high-resolution internally perfusable scaffolds (CHIPS) that integrate with a vascular and perfusion organ-on-a-chip reactor (VAPOR) to form a complete tissue engineering platform. We improve the fidelity of freeform reversible embedding of suspended hydrogels (FRESH) bioprinting to produce a range of CHIPS designs fabricated in a one-step process. CHIPS exhibit size-dependent permeability of perfused molecules into the surrounding scaffold to support cell viability and migration. Lastly, we implemented multi-material bioprinting to control 3D spatial patterning, ECM composition, cellularization, and material properties to create a glucose-responsive, insulin-secreting pancreatic-like CHIPS with vascular endothelial cadherin+ vascular-like networks. Together, CHIPS and VAPOR form a platform technology toward engineering full organ-scale function for disease modeling and cell replacement therapy.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました