AIと遺伝子情報でトウモロコシの窒素利用効率を向上(Artificial Intelligence and Genetics Can Help Farmers Grow Corn with Less Fertilizer)

ad

2025-05-14 ニューヨーク大学(NYU)

AIと遺伝子情報でトウモロコシの窒素利用効率を向上(Artificial Intelligence and Genetics Can Help Farmers Grow Corn with Less Fertilizer)

Corn growing in the Irene Rose Sohn Zegar Memorial Greenhouse on the top floor of NYU’s Center for Genomics and Systems Biology. Credit: Tracey Friedman/NYU

ニューヨーク大学(NYU)の研究チームは、人工知能(AI)と遺伝子解析を組み合わせ、トウモロコシの窒素利用効率(NUE)を制御する遺伝子群「レギュロン(regulons)」を特定する新手法を開発しました。この手法は、植物の窒素吸収と利用に関与する遺伝子ネットワークを明らかにし、環境負荷の少ない農業の実現に貢献する可能性があります。研究では、機械学習を用いてトウモロコシの遺伝子発現データを解析し、NUEに関連するレギュロンを同定しました。これにより、窒素肥料の使用量を削減しつつ、作物の収量を維持または向上させるための遺伝子ターゲットが明らかになりました。この成果は、持続可能な農業の推進や、気候変動への対応策として注目されています。今後、他の作物への応用や、環境に優しい農業技術の開発が期待されます。

<関連情報>

モデルから作物へ保存されたNUEレギュロンが、窒素利用効率の機械学習による予測を強化する NUE regulons conserved model-to-crop enhance machine learning predictions of nitrogen use efficiency

Ji Huang , Chia-Yi Cheng , Matthew D Brooks , Tim L Jeffers , Nathan M Doner , Hung-Jui Shih , Samantha Frangos , Manpreet Singh Katari , Gloria M Coruzzi
The Plant Cell  Published:14 May 2025
DOI:https://doi.org/10.1093/plcell/koaf093

Abstract

Systems biology aims to uncover gene regulatory networks (GRNs) for agricultural traits, but validating them in crops is challenging. We addressed this challenge by learning and validating model-to-crop GRN regulons governing nitrogen use efficiency (NUE). First, a fine-scale time-course nitrogen (N) response transcriptome analysis revealed a conserved temporal N response cascade in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). This data was used to infer time-based causal transcription factor (TF) target edges in N-regulated GRNs (N-GRNs). By validating 23 maize TFs in a cell-based TF-perturbation assay (TARGET), precision/recall analysis enabled us to prune high-confidence edges between ∼200 TFs/700 maize target genes. We next learned gene-to-NUE trait scores using XGBoost machine learning models trained on conserved N-responsive genes across maize and Arabidopsis accessions. By integrating NUE gene scores within our N-GRN, we ranked maize TFs based on a cumulative NUE regulon score. Regulons for top-ranked TFs were validated using the cell-based TARGET assay in maize (e.g. ZmMYB34/R3→24 targets) and the Arabidopsis ZmMYB34/R3 ortholog (e.g. AtDIV1→23 targets). The genes in this NUE regulon significantly enhanced the ability of XGBoost models to predict NUE traits in both maize and Arabidopsis. Thus, our pipeline for identifying NUE regulons that combines GRN inference, machine learning, and orthologous network regulons offers a strategic framework for crop trait improvement.

 

進化的情報に基づく機械学習が遺伝子と表現型の関係を予測する力を高める Evolutionarily informed machine learning enhances the power of predictive gene-to-phenotype relationships

Chia-Yi Cheng,Ying Li,Kranthi Varala,Jessica Bubert,Ji Huang,Grace J. Kim,Justin Halim,Jennifer Arp,Hung-Jui S. Shih,Grace Levinson,Seo Hyun Park,Ha Young Cho,Stephen P. Moose & Gloria M. Coruzzi
Nature Communications  Published:24 September 2021
DOI:https://doi.org/10.1038/s41467-021-25893-w

figure 1

Abstract

Inferring phenotypic outcomes from genomic features is both a promise and challenge for systems biology. Using gene expression data to predict phenotypic outcomes, and functionally validating the genes with predictive powers are two challenges we address in this study. We applied an evolutionarily informed machine learning approach to predict phenotypes based on transcriptome responses shared both within and across species. Specifically, we exploited the phenotypic diversity in nitrogen use efficiency and evolutionarily conserved transcriptome responses to nitrogen treatments across Arabidopsis accessions and maize varieties. We demonstrate that using evolutionarily conserved nitrogen responsive genes is a biologically principled approach to reduce the feature dimensionality in machine learning that ultimately improved the predictive power of our gene-to-trait models. Further, we functionally validated seven candidate transcription factors with predictive power for NUE outcomes in Arabidopsis and one in maize. Moreover, application of our evolutionarily informed pipeline to other species including rice and mice models underscores its potential to uncover genes affecting any physiological or clinical traits of interest across biology, agriculture, or medicine.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました