大規模メタボロームデータ解析のための新フレームワーク(Framework for analysing large-scale metabolomic data)

ad

2025-05-30 シンガポール国立大学(NUS)

シンガポール国立大学(NUS)の研究チームは、核磁気共鳴(NMR)による大規模メタボロームデータの解析を効率化する新たなフレームワークを開発しました。この手法は、従来の解析法では困難だった高次元データの構造を、低次元空間に写像する「マニフォールドフィッティング」を活用しています。これにより、数千人規模のバイオマーカー情報を可視化し、疾患関連の代謝パターンを高精度に抽出することが可能となりました。この技術は、疾患予測や個別化医療の進展に寄与することが期待されています。

<関連情報>

多様体フィッティングにより、英国バイオバンク集団における代謝異質性と疾患の関連性が明らかに Manifold fitting reveals metabolomic heterogeneity and disease associations in UK Biobank populations

Bingjie Li, Jiaji Su, Runyu Lin, +1 , and Zhigang Yao
Proceedings of the National Academy of Sciences  Published:May 28, 2025
DOI:https://doi.org/10.1073/pnas.2500001122

大規模メタボロームデータ解析のための新フレームワーク(Framework for analysing large-scale metabolomic data)

Significance

This study utilizes a manifold-fitting framework within NMR-based metabolomics to explore metabolic heterogeneity in the UK Biobank population. Our method clusters 251 metabolic biomarkers into seven distinct categories that reflect the modular organization of human metabolism. Applying manifold fitting reveals low-dimensional structures in each category, capturing crucial metabolic variations associated with diverse disease risks. Notably, fitted manifolds in three categories distinctly stratify the population, each identifying two subgroups with unique metabolic profiles linked to a broad spectrum of diseases, from metabolic complications to cardiovascular and autoimmune disorders. This nuanced stratification enhances our understanding of the interactions between metabolism and disease, potentially guiding personalized health interventions and advancing preventive medicine strategies.

Abstract

NMR-based metabolic biomarkers provide comprehensive insights into human metabolism; however, extracting biologically meaningful patterns from such high-dimensional data remains a significant challenge. In this study, we propose a manifold-fitting-based framework to analyze metabolic heterogeneity within the UK Biobank population, utilizing measurements of 251 NMR biomarkers from 212,853 participants. Initially, our method clusters these biomarkers into seven distinct metabolic categories that reflect the modular organization of human metabolism. Subsequent manifold fitting to each category unveils underlying low-dimensional structures, elucidating fundamental variations from basic energy metabolism to hormone-mediated regulation. Importantly, three of these manifolds clearly stratify the population, identifying subgroups with distinct metabolic profiles and associated disease risks. These subgroups exhibit consistent links with specific diseases, including severe metabolic dysregulation and its complications, as well as cardiovascular and autoimmune conditions, highlighting the intricate relationship between metabolic states and disease susceptibility. Supported by strong correlations with demographic factors, clinical measurements, and lifestyle variables, these findings validate the biological relevance of the identified manifolds. By utilizing a geometrically informed approach to dissect metabolic heterogeneity, our framework enhances the accuracy of population stratification and deepens our understanding of metabolic health, potentially guiding personalized interventions and preventive healthcare strategies.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました