DNAで被覆された電極による安価な診断技術開発(MIT engineers develop electrochemical sensors for cheap, disposable diagnostics)

ad

2025-07-01 マサチューセッツ工科大学 (MIT)

DNAで被覆された電極による安価な診断技術開発(MIT engineers develop electrochemical sensors for cheap, disposable diagnostics)
The electrochemical sensors developed in Ariel Furst’s lab consist of DNA adhered to an inexpensive gold leaf electrode, which is laminated onto a sheet of plastic. Credit: Courtesy of the researchers; edited by MIT News

MITの研究チームが、CRISPR酵素Cas12とDNAコーティング電極を組み合わせた、安価で使い捨て可能なエレクトロケミカルセンサーを開発した。金箔電極に固定したDNAをPVAで安定化させることで、常温・高温下でも長期保存が可能。対象遺伝子が検出されるとCas12がDNAを切断し、電気信号の低下で識別する。価格は1枚50セント程度と低コストで、尿や唾液など多様な検体に対応。前立腺がんやHPVの検出にも応用され、現地検査を容易にする技術として期待されている。

<関連情報>

固定化DNAの長期保存のためのポリマーコーティング Polymer Coating for the Long-Term Storage of Immobilized DNA

Xingcheng ZhouJessica SlaughterSmah RikiChao Chi KuoAriel Furst
ACS Sensors  Published: June 30, 2025
DOI:https://doi.org/10.1021/acssensors.5c00937

Abstract

As healthcare systems worldwide demand early disease detection and personalized medicine, electrochemical biosensors stand out as a promising technology to meet these demands due to their sensitivity, selectivity, and rapid response. Specifically, DNA-based electrochemical biosensors are versatile and have been used to identify biomarkers of various infectious diseases. However, there is a significant gap between laboratory-scale proof-of-concept systems and commercially viable technologies. Commercialization of such sensors faces many challenges, with one of the most important being the stability and shelf life of the immobilized DNA. Surface-associated DNA faces thermal degradation, structural changes, and oxidation of tethering thiol groups, which causes DNA stripping from the surface. Currently, technology to support the long-term storage of these sensors at ambient temperatures is limited. Here, we report a novel method to preserve DNA in electrochemical biosensors through the application of a protective coating of poly(vinyl alcohol) (PVA). We show that with our PVA coating, the shelf life of dried, DNA-functionalized electrodes at ambient temperature is a minimum of 2 months. We further demonstrate that the protective capabilities of PVA extend to temperatures as high as 65 °C and that the biological relevance of the assay is not impacted by the coating. Our simple approach to DNA protection supports our understanding of how the electrode interfaces with biomolecules and facilitates biosensor scaling and commercialization.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました