微生物-代謝物関連性発見のための深層ベイズ統合解析法VBayesMMを開発

ad

2025-07-04 東京大学

東京大学の研究チームは、微生物とヒト代謝物の関連性を高精度かつ不確実性も含めて解析できる新手法「VBayesMM」を開発しました。スパイク・アンド・スラブ事前分布付きベイズニューラルネットワークと変分推論を統合し、高次元データから重要な微生物種を特定しつつ計算効率も向上。4つの疾患(胃がん、大腸がん、睡眠時無呼吸症候群、高脂肪食)で有効性を実証し、従来法を大幅に上回る予測精度を示しました。個別化医療や創薬への応用が期待されます。

微生物-代謝物関連性発見のための深層ベイズ統合解析法VBayesMMを開発
微生物-宿主代謝物間の関連性を発見するためのVBayesMM法

<関連情報>

VBayesMM:高次元マイクロバイオームマルチオミクスデータの重要な関係を優先順位付けする変分ベイズニューラルネットワーク VBayesMM: variational Bayesian neural network to prioritize important relationships of high-dimensional microbiome multiomics data

Tung Dang , Artem Lysenko , Keith A Boroevich , Tatsuhiko Tsunoda
Briefings in Bioinformatics  Published:04 July 2025
DOI:https://doi.org/10.1093/bib/bbaf300

Abstract

The analysis of high-dimensional microbiome multiomics datasets is crucial for understanding the complex interactions between microbial communities and host physiological states across health and disease conditions. Despite their importance, current methods, such as the microbe–metabolite vectors approach, often face challenges in predicting metabolite abundances from microbial data and identifying keystone species. This arises from the vast dimensionality of metagenomics data, which complicates the inference of significant relationships, particularly the estimation of co-occurrence probabilities between microbes and metabolites. Here we propose the variational Bayesian microbiome multiomics (VBayesMM) approach, which aims to improve the prediction of metabolite abundances from microbial metagenomics data by incorporating a spike-and-slab prior within a Bayesian neural network. This allows VBayesMM to rapidly and precisely identify crucial microbial species, leading to more accurate estimations of co-occurrence probabilities between microbes and metabolites, while also robustly managing the uncertainty inherent in high-dimensional data. Moreover, we have implemented variational inference to address computational bottlenecks, enabling scalable analysis across extensive multiomics datasets. Our large-scale comparative evaluations demonstrate that VBayesMM not only outperforms existing methods in predicting metabolite abundances but also provides a scalable solution for analyzing massive datasets. VBayesMM enhances the interpretability of the Bayesian neural network by identifying a core set of influential microbial species, thus facilitating a deeper understanding of their probabilistic relationships with the host.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました