アルツハイマー病関連酵素の標的選択機構をAI解析(AI analysis: how an enzyme associated with Alzheimer’s chooses its target proteins)

ad

2025-07-11 ミュンヘン大学(LMU)

ミュンヘン大学(LMU)やミュンヘン工科大学(TUM)などの研究チームは、アルツハイマー病に関連する酵素「γ-セクレターゼ」が標的タンパク質を選ぶ仕組みを、AIと独自の手法「比較物理化学プロファイリング(CPP)」により解明。γ-セクレターゼは150以上の膜タンパク質を切断するが、従来のアミノ酸配列依存の認識とは異なり、基質全体の物理化学的特徴で認識していた。新たな基質も複数発見され、創薬や他の酵素研究にも応用が期待される。

<関連情報>

説明可能なAIによるγセクレターゼ基質のチャート化 Charting γ-secretase substrates by explainable AI

Stephan Breimann,Frits Kamp,Gabriele Basset,Claudia Abou-Ajram,Gökhan Güner,Kanta Yanagida,Masayasu Okochi,Stephan A. Müller,Stefan F. Lichtenthaler,Dieter Langosch,Dmitrij Frishman & Harald Steiner
Nature Communications  Published:01 July 2025
DOI:https://doi.org/10.1038/s41467-025-60638-z

アルツハイマー病関連酵素の標的選択機構をAI解析(AI analysis: how an enzyme associated with Alzheimer’s chooses its target proteins)

Abstract

Proteases recognize substrates by decoding sequence information—an essential cellular process elusive when recognition motifs are absent. Here, we unravel this problem for γ-secretase, an intramembrane-cleaving protease associated with Alzheimer’s disease and cancer, by developing Comparative Physicochemical Profiling (CPP), a sequence-based algorithm for identifying interpretable physicochemical features. We show that CPP deciphers a γ-secretase substrate signature with single-residue resolution, which can explain the conformational transitions observed in substrates upon γ-secretase binding. Using machine learning, we predict the entire human γ-secretase substrate scope, revealing numerous previously unknown substrates. Our approach outperforms state-of-the-art protein language models, improving prediction accuracy from 60% to 90%, and achieves an 88% success rate in experimental validation. Building on these advancements, we identify pathways and diseases not linked before to γ-secretase. Generally, CPP decodes physicochemical signatures—a concept that extends beyond sequence motifs. We anticipate that our approach will be broadly applicable to diverse molecular recognition processes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました