タンパク質プロテオーム解析により酵母の窒素飢餓下での代謝再構築を解明(New Proteomics Approach Reveals How Nitrogen Starvation Rewires Metabolism in Oil-Producing Yeast Rhodotorula toruloides)

ad

2025-08-19 パシフィック・ノースウェスト国立研究所(PNNL)

PNNLの研究チームは、油脂生産酵母 Rhodotorula toruloides において窒素飢餓が代謝をどのように変化させるかを、新しい統合プロテオミクス手法で解明した。リピドミクス、レドックスプロテオミクス、フォスフォプロテオミクスを組み合わせて解析した結果、脂質蓄積は酵素量の増加ではなく、「翻訳後修飾(PTM)による炭素再配分と自食作用(オートファジー)」が鍵であることが判明した。また、リン脂質やスフィンゴ脂質の分解がERストレスやミトファジーと連動し、AMPK・TOR・カルシウムシグナル経路が脂質生成やストレス応答に関与することも確認。さらに脂肪酸合成酵素がPTMで制御されることを初めて示した。これにより、AIや機械学習を活用した代謝工学設計に新たな道が開かれ、持続可能なバイオ燃料・化学品生産への応用が期待される。

<関連情報>

窒素の制限は、Rhodotorula toruloidesにおける炭素代謝と脂質体再編成に関連するタンパク質の酸化還元状態とリン酸化に劇的な変化を引き起こす Nitrogen limitation causes a seismic shift in redox state and phosphorylation of proteins implicated in carbon flux and lipidome remodeling in Rhodotorula toruloides

Austin Gluth,Jeffrey J. Czajka,Xiaolu Li,Kent J. Bloodsworth,Josie G. Eder,Jennifer E. Kyle,Rosalie K. Chu,Bin Yang,Wei-Jun Qian,Pavlo Bohutskyi & Tong Zhang
Biotechnology for Biofuels and Bioproducts  Published:21 July 2025
DOI:https://doi.org/10.1186/s13068-025-02657-y

タンパク質プロテオーム解析により酵母の窒素飢餓下での代謝再構築を解明(New Proteomics Approach Reveals How Nitrogen Starvation Rewires Metabolism in Oil-Producing Yeast Rhodotorula toruloides)

Abstract

Background

Oleaginous yeast are prodigious producers of oleochemicals, offering alternative and secure sources for applications in foodstuff, skincare, biofuels, and bioplastics. Nitrogen starvation is the primary strategy used to induce oil accumulation in oleaginous yeast as part of a global stress response. While research has demonstrated that post-translational modifications (PTMs), including phosphorylation and protein cysteine thiol oxidation (redox PTMs), are involved in signaling pathways that regulate stress responses in metazoa and algae, their role in oleaginous yeast remain understudied and unexplored.

Results

Towards linking the yeast oleaginous phenotype to protein function, we integrated lipidomics, redox proteomics, and phosphoproteomics to investigate Rhodotorula toruloides under nitrogen-rich and starved conditions over time. Our lipidomics results unearthed interactions involving sphingolipids and cardiolipins with ER stress and mitophagy. Our redox and phosphoproteomics data highlighted the roles of the AMPK, TOR, and calcium signaling pathways in regulation of lipogenesis, autophagy, and oxidative stress response. As a first, we also demonstrated that lipogenic enzymes including fatty acid synthase are modified as a consequence of shifts in cellular redox states due to nutrient availability.

Conclusions

We conclude that lipid accumulation is largely a consequence of carbon rerouting and autophagy governed by changes to PTMs, and not increases in the abundance of enzymes involved in central carbon metabolism and fatty acid biosynthesis. Our systems-level approach sets the stage for acquiring multidimensional data sets for protein structural modeling and predicting the functional relevance of PTMs using Artificial Intelligence/Machine Learning (AI/ML). Coupled to those bioinformatics approaches, the putative PTM switches that we delineate will enable advanced metabolic engineering strategies to decouple lipid accumulation from nitrogen limitation.

生物化学工学
ad
ad
Follow
ad
タイトルとURLをコピーしました