シミュレーションによる救命支援技術の開発(Saving Lives Through Simulation)

ad

2025-08-20 ピッツバーグ大学

ピッツバーグ大学の研究チームは、ケニアの血液供給システムを対象に、初の包括的な離散事象シミュレーション(DES)モデルを開発した(PLOS Global Public Health掲載)。献血、検査、保管、搬送、輸血といった一連の流れをプロセスマップ化し、ナクル・シアヤ・トゥルカナ3県の病院データを基に構築。Simioソフトを用いた1年分のシミュレーションで「患者の血液需要が満たされる割合」を評価指標とした。解析では献血者の優先順位変更、疾患構成の違い、再補充戦略などの介入効果を検証でき、ボトルネックや改善余地の特定が可能となった。低・中所得国で血液供給全体をDESで精緻に分析したのは世界初であり、政策立案や現場対応を支援する意思決定ツールとして期待される。

<関連情報>

ケニアの血液輸血システムのシミュレーション:モデリング手法と探索的分析 Simulating the blood transfusion system in Kenya: Modelling methods and exploratory analyses

Yiqi Tian,Bo Zeng ,Jana MacLeod ,Gatwiri Murithi ,Cindy M. Makanga ,Hillary Barmasai,Linda S. Barnes,Rahul S. Bidanda,Tecla Chelagat,Tonny Ejilkon Epuu,Abdirahaman Musa,Robert Kamu Kaburu,Jason Madan, [ … ],Pratap Kumar
PLOS Global Public Health  Published: August 13, 2025
DOI:https://doi.org/10.1371/journal.pgph.0004587

シミュレーションによる救命支援技術の開発(Saving Lives Through Simulation)

Abstract

The process of collecting blood from donors and making it available for transfusion requires a complex series of operations involving multiple actors and different resources at each step. Ensuring hospitals receive adequate and safe blood for transfusion is a common challenge across low- and middle-income countries, but is rarely addressed from a system level. This paper presents the first use of discrete event simulation to study the blood system in Kenya and to explore the effect of variations and perturbations at different steps of the system on meeting blood demand at patient level. A process map of the Kenyan blood system was developed to capture critical steps from blood donation to transfusion using interviews with blood bank, hospital and laboratory personnel at four public hospitals across three counties in Kenya. The blood system was simulated starting with blood collection, a blood bank where blood is tested and stored before it is issued, a major hospital attached to the blood bank, and several smaller hospitals served by the same blood bank. Values for supply-side parameters were based mainly on expert opinion; demand-side parameters were based on data from blood requisitions made in hospital wards, and dispatch of blood from the hospital laboratory. Illustrative examples demonstrate how the model can be used to explore impacts of changes in blood collection (e.g., prioritising different donor types), blood demand (e.g., differing clinical case mix), and blood distribution (e.g., restocking strategies) on meeting demand at patient level. The model can reveal potential process impediments in the blood system and aid in choosing between alternate strategies or policies for improving blood collection, testing, distribution or use. Such a systems approach allows for interventions at different steps in the blood continuum to be tested on blood availability for different patients presenting at diverse hospitals across the country.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました