ユーグレナにおけるイントロンの非従来型配列規則を解明~真核生物の新たな遺伝子発現の塩基配列ルール~

ad

2025-09-23 理化学研究所,東京大学,株式会社ユーグレナ,山形大学,鶴岡工業高等専門学校,高知大学,長崎大学,横浜市立大学

理化学研究所らの共同研究チームは、ミドリムシ(ユーグレナ)のゲノムを解析し、真核生物で一般的な「GT-AGルール」とは異なる非従来型イントロンが多数存在し、それぞれ固有の配列規則に基づきスプライシングされることを解明しました。従来型と非従来型が同一生物内で併用される分子遺伝学的実例は初めてであり、ゲノム編集による合成イントロン導入実験でも機能を確認。この成果はPNASに掲載され、真核生物の遺伝子発現機構理解を刷新するとともに、遺伝子機能制御や応用研究(藻類資源利用、医療バイオテクノロジー)への発展が期待されます。

ユーグレナにおけるイントロンの非従来型配列規則を解明~真核生物の新たな遺伝子発現の塩基配列ルール~
真核生物の遺伝子発現とユーグレナゲノムの非従来型イントロン
(Created in BioRender. Mochida, K. (2025) )

<関連情報>

非従来型イントロンの遺伝学的解析により、ユーグレナにおける共優性非標準スプライシングコードが明らかになる Genetic dissection of nonconventional introns reveals codominant noncanonical splicing code in Euglena

Toshihisa Nomura, June-Sik Kim, Osamu Iwata, +11 , and Keiichi Mochida
Proceedings of the National Academy of Sciences  Published:September 23, 2025
DOI:https://doi.org/10.1073/pnas.2509937122

Significance

While eukaryotic genes typically contain introns with conventional GT-AG boundaries, many nonconventional introns, which lack these boundaries, remain poorly characterized. Our genome-wide analysis revealed that, uniquely among eukaryotes, Euglena codominantly employs nonconventional introns. By systematically testing both natural and synthetic introns, we identified key DNA sequence signatures for this unusual splicing mechanism and validated the underlying splicing code. The identification of a prevalent nonconventional splicing code in Euglena expands our understanding of the diversity of RNA processing and opens avenues for exploring noncanonical splicing machineries, with implications for evolutionary biology and biotechnology.

Abstract

Pre-mRNA splicing is essential for eukaryotic gene expression and is achieved through the accurate recognition of exon–intron boundaries. Although nonconventional introns, which do not follow the conventional GT-AG splicing rule, have been identified in several species, these introns are typically rare in any given genome. Here, we demonstrate the widespread occurrence of nonconventional introns (71.8% of all introns) in the Euglena agilis genome and identify consensus motifs at these nonconventional exon–intron boundaries. We assessed the splicing efficiency of nonconventional introns and variants with point mutations via genomic knock-in within the second exon of Glucan synthase-like 2 in Euglena gracilis and genetically defined the sequence signature (5′-N3CDG-/-CH′GN5–6|Rexon-3′) required for their proper splicing. This signature is present in 61.2% of all nonconventional introns detected in the E. agilis genome. Accordingly, we present a noncanonical splicing code for Euglena introns, highlighting the global coexistence of dual splicing rules for conventional and nonconventional introns.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました