冬眠中の神経活動を監視するナノ複合材料修飾MEAを開発(Scientists Develop Nanocomposite-Modified MEAs for Monitoring Neuronal Activity During Hibernation)

ad

2025-09-25 中国科学院(CAS)

中国科学院航空宇宙情報研究所の蔡新霞教授らは、冬眠中の神経活動を長期間・高感度で記録できる「ナノ複合材料修飾マイクロ電極アレイ(MEA)」を開発した。プラチナナノ粒子とプルシアンブルーを電極に導入することで、従来の3倍以上の信号対雑音比を実現し、3か月以上安定した性能を維持。シベリアジリスでの実験では、冬眠中でも活動を続ける特定のニューロン(タイプ3)を確認し、覚醒時にはシータ帯域の急増が意識回復の予測指標となることを示した。また、酸化ストレス軽減と炎症抑制により記録品質が向上。さらに、ATP7AやKCNH8などの遺伝子発現変化も同定され、極限状態における脳の保護メカニズム解明に寄与するとされる。本成果は、神経疾患治療や宇宙探査に応用が期待される。

<関連情報>

冬眠状態を制御する重要なニューロンを検出するためのPtNPs/プルシアンブルー修飾微小電極アレイ PtNPs/Prussian Blue-Modified Microelectrode Arrays for Detection of Key Neurons Regulating Hibernation State

Yiding Wang,Chao Yang,Yilin Song,Guihua Xiao,Jiangbei Cao,Weidong Mi,Gucheng Yang,Wei Xu,Yuchuan Dai,Juntao Liu,Zhongquan Dai,Lina Qu,Jinping Luo,Yinghui Li,and Xinxia Cai
ACS Sensors  Published:Published July 28, 2025
DOI:https://doi.org/10.1021/acssensors.5c00310

Abstract

冬眠中の神経活動を監視するナノ複合材料修飾MEAを開発(Scientists Develop Nanocomposite-Modified MEAs for Monitoring Neuronal Activity During Hibernation)

Studying neuronal activity during hibernation’s extremely low metabolic state may offer novel solutions for metabolic disorders, stroke treatment, and space travel challenges. To explore hibernation’s neural mechanisms, we developed a natural hibernation model using Siberian chipmunks(Tamias sibiricus). However, their characteristic weak neuronal discharge and prolonged hibernation periods necessitate electrodes with both enhanced detection sensitivity and exceptional long-term stability. We developed a new nanocomposite platinum nanoparticles/Prussian blue-modified microelectrode arrays (MEAs) aimed at solving the above difficulties. Prussian blue can react with reactive oxygen species to reduce inflammation during the detection process; therefore, MEAs achieved a high signal-to-noise ratio (15.53 ± 6.73) in the detection of individual neurons, even against weak neural activity in dormant states. We discovered that three types of neurons exhibited distinct responses to hibernation and established three-dimensional characteristics to differentiate them through algorithmic processing of the signal. Type 3 neurons discharged in the extremely low metabolic state, indicating that Type 3 neurons are critical for chipmunks to enter and maintain deep hibernation without damaging the brain. The theta frequency band of local field potentials (LFPs) rapidly increased during arousal, representing consciousness arousal, and can be used as a key signal to predict arousal. These results fill part of the research gaps in the characteristics of critical neurons during hibernation and provide a solid foundation for regulating neurons to control the body into a state of low temperature and low metabolism.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました