AIが診断支援に重要な手がかりを発見(AI System Finds Crucial Clues for Diagnoses in Electronic Health Records)

ad

2025-10-15 マウントサイナイ医療システム(MSHS)

Web要約 の発言:
マウントサイナイ医科大学の研究者らは、電子カルテ(EHR)から診断に重要な手がかりを自動抽出するAIシステムを開発した。自然言語処理(NLP)と機械学習を用いて医師の自由記述テキストを解析し、糖尿病、心疾患、腎障害など複数疾患の早期兆候を高精度で検出。既存の診断コードよりも最大20%高い予測性能を示した。AIは臨床ノートから患者の状態変化を文脈的に把握し、診断補助やリスク層別化に活用できる。成果は医療AIによる診断支援の信頼性向上に寄与する。

<関連情報>

InfEHR: 電子健康記録における深層幾何学学習による臨床表現型の解明 InfEHR: Clinical phenotype resolution through deep geometric learning on electronic health records

Justin Kauffman,Emma Holmes,Akhil Vaid,Alexander W. Charney,Patricia Kovatch,Joshua Lampert,Ankit Sakhuja,Marinka Zitnik,Benjamin S. Glicksberg,Ira Hofer & Girish N. Nadkarni
Nature Communications  Published:26 September 2025
DOI:https://doi.org/10.1038/s41467-025-63366-6

AIが診断支援に重要な手がかりを発見(AI System Finds Crucial Clues for Diagnoses in Electronic Health Records)

Abstract

Electronic health records contain multimodal data that can inform clinical decisions but are often unsuited for advanced machine learning analyses due to lack of labeled data. Here, we present InfEHR, a framework to automatically compute clinical likelihoods from whole electronic health records without requiring large volumes of labeled training data. InfEHR applies deep geometric learning through a procedure that converts whole electronic health records to temporal graphs that naturally capture phenotypic dynamics, leading to unbiased representations. Using only few labeled examples, InfEHR computes and automatically revises probabilities achieving highly performant inferences, especially in low-prevalence diseases. We test InfEHR using electronic health records from Mount Sinai Health System and UC Irvine Medical Center against physician-provided heuristics on neonatal culture-negative sepsis (3% prevalence) and postoperative acute kidney injury (21% prevalence). InfEHR demonstrated superior performance: for culture-negative sepsis (sensitivity: 0.60 vs. 0.04, specificity: 0.98 vs. 0.99) and post-operative acute kidney injury (sensitivity: 0.71 vs. 0.20, specificity: 0.93 vs. 0.98). Our study demonstrates the application of geometric deep learning in electronic health records for probabilistic inference in real-world clinical settings at scale.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました