クロ―ン病遺伝子に関するAI研究(Rebalancing the Gut: How AI Solved a 25-Year Crohn’s Disease Mystery)

ad

2025-10-27 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校の研究チームは、AI解析によりクローン病の発症機構に関する25年来の謎を解明した。研究は、腸のマクロファージのうち炎症型と修復型のどちらに分化するかを制御する遺伝子群をAIで解析し、53遺伝子の特徴的シグネチャを同定。その中のNOD2遺伝子がタンパク質Girdinと結合することで腸内免疫バランスを維持することを発見した。一方、クローン病患者に多いNOD2変異はGirdin結合部位を欠失しており、炎症型マクロファージが過剰に増えることで慢性腸炎が生じる。マウス実験でもGirdin欠損個体では腸内細菌叢の乱れと敗血症が確認された。AIと構造生物学を融合させた本研究は、炎症性腸疾患の個別化治療や創薬に新たな指針を与えるもので、成果は『Journal of Clinical Investigation』誌に掲載された。

クロ―ン病遺伝子に関するAI研究(Rebalancing the Gut: How AI Solved a 25-Year Crohn’s Disease Mystery)
Electron micrographs show how macrophages expressing girdin neutralize pathogens by fusing phagosomes (P) with the cell’s lysosomes (L) to form phagolysosomes (PL), compartments where pathogens and cellular debris are broken down (left). This process is crucial for maintaining cellular homeostasis. In the absence of girdin, this fusion fails, allowing pathogens to evade degradation and escape neutralization (right). (UC San Diego Health Sciences)

<関連情報>

異なる大腸炎関連マクロファージがNOD2依存性細菌感知と腸管恒常性維持を促進する Distinct colitis-associated macrophages drive NOD2-dependent bacterial sensing and gut homeostasis

Gajanan D. Katkar, Mahitha Shree Anandachar, Stella-Rita C. Ibeawuchi, Ella G. McLaren, Megan L. Estanol, Kennith Carpio-Perkins, Shu-Ting Hsu, Celia R. Espinoza, Jane E. Coates, Yashaswat S. Malhotra, Madhubanti Mullick, Vanessa Castillo, Daniella Vo, Saptarshi Sinha, and Pradipta Ghosh
Journal of Clinical Investigation  Published: October 2, 2025
DOI:https://doi.org/10.1172/JCI190851

Abstract

Single-cell studies have revealed that intestinal macrophages maintain gut homeostasis through the balanced actions of reactive (inflammatory) and tolerant (non-inflammatory) subpopulations. How such balance is impaired in inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), remains unresolved. Here, we define colon-specific macrophage states and reveal the critical role of non-inflammatory colon-associated macrophages (niColAMs) in IBD recovery. Through trans-scale analyses—integrating computational transcriptomics, proteomics, and in vivo interventional studies—we identified GIV (CCDC88A) as a key regulator of niColAMs. GIV emerged as the top-ranked gene in niColAMs that physically and functionally interacts with NOD2, an innate immune sensor implicated in CD and UC. Myeloid-specific GIV depletion exacerbates infectious colitis, prolongs disease, and abolishes the protective effects of the NOD2 ligand, muramyl dipeptide, in colitis and sepsis models. Mechanistically, GIV’s C-terminus binds the terminal leucine-rich repeat (LRR#10) of NOD2 and is required for NOD2 to dampen inflammation and clear microbes. The CD-associated 1007fs NOD2-variant, which lacks LRR#10, cannot bind GIV—providing critical insights into how this clinically relevant variant impairs microbial sensing and clearance. These findings illuminate a critical GIV-NOD2 axis essential for gut homeostasis and highlight its disruption as a driver of dysbiosis and inflammation in IBD.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました