脳外傷の長期的影響を研究する卓上爆風装置を開発(URI team creates tabletop blast device to study long-term consequences of traumatic brain injury)

ad

2025-11-10 ロードアイランド大学(URI)

ロードアイランド大学の研究チームは、外傷性脳損傷(TBI)の長期的影響を解明するため、実験室で再現可能な卓上型爆風装置を開発した。この装置は水を満たした小型ショックチューブ構造を採用し、従来の大型設備を用いずに現実的な圧力波を再現できる。研究ではヒト誘導多能性幹細胞(iPSC)由来の脳オルガノイドを使用し、爆風による細胞損傷を観察。その結果、脳皮質深層のニューロンが表層よりも損傷を受けやすいことが示唆された。TBIは世界で年間6500万人以上が罹患し、神経変性疾患の発症リスクを高めるとされる。この新装置により、ヒト細胞モデルでDNA損傷、神経細胞死、炎症反応の機構を解析でき、動物実験を減らしつつ治療法開発に貢献すると期待される。研究者は、TBIとアルツハイマー病などの神経疾患の関連解明を目指している。

脳外傷の長期的影響を研究する卓上爆風装置を開発(URI team creates tabletop blast device to study long-term consequences of traumatic brain injury)
The URI-built experimental model offers new way to look at TBI-related neurodegenerative disease.

<関連情報>

外傷性脳損傷が脳オルガノイドに及ぼす長期的な影響を研究するための卓上爆破装置 A tabletop blast device for the study of the long-term consequences of traumatic brain injury on brain organoids

Riccardo Sirtori ∙ Akash Pandey ∙ Arun Shukla ∙ Claudia Fallini
Cell Reports Methods  Published:November 3, 2025
DOI:https://doi.org/10.1016/j.crmeth.2025.101213

Motivation

Modeling traumatic brain injury (TBI) in iPSC-derived brain organoids offers a valuable alternative to animal models, allowing for the study of human-specific processes affected by the injury in vitro. However, methodological variabilities and the need for expensive and specialized equipment have limited the adoption of this technology. Here, we developed a tabletop blast device capable of delivering tunable pressure waves to brain organoids in suspension, designed for easy implementation in standard biomedical laboratories.

Highlights

  • To model TBI in vitro, we develop an easily implementable tabletop blast device
  • Our device can deliver tunable pressure waves to human brain organoids
  • Blast waves induce acute neurodegeneration and chronic dysfunction in neurons

Summary

Traumatic brain injury (TBI) is the leading environmental risk factor for neurodegenerative diseases, yet its molecular link to chronic neurodegeneration is unclear. While animal models of TBI are commonly used, emerging research suggests that induced pluripotent stem cell (iPSC)-derived brain organoids offer a promising human-specific alternative, particularly for studying processes like cryptic exon splicing. However, widespread use has been limited by methodological variability and the need for expensive and specialized equipment. To address these challenges, we developed a tabletop blast device capable of delivering highly reproducible pressure waves via a gravity-based pressure chamber. We validated the applicability of our approach by assessing the short- and long-term consequences of mechanical stress on brain organoids after pressure wave exposure. Our approach provides a controllable and reproducible method to apply complex pressure cycles on brain organoids, enabling broader accessibility for studying the mechanistic links between TBI and neurodegeneration in a human-relevant context.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました