長寿動物の秘密をRNA編集から解明(New clues to why some animals live longer)

ad

2025-11-24 カリフォルニア大学リバーサイド校(UCR)

カリフォルニア大学リバーサイド校の研究チームは、哺乳類の寿命差を生み出す“長寿の分子基盤”を解明するため、30種以上の動物でDNA損傷修復遺伝子の進化を比較した。特に、コウモリ・クジラ・モグラなど長寿種では、DNA二本鎖切断を修復する PRDM9 や RAD50 などの遺伝子に、寿命延長と相関するアミノ酸置換・進化加速が認められた。さらに、培養細胞でこれらの“長寿バリアント”を導入すると、ゲノム安定性が高まり、老化関連マーカーの発現が低下した。解析は、体サイズや代謝率の違いでは説明できない“種固有の寿命”が、ゲノム修復能力の進化的強化によって支えられている可能性を示すものである。研究者は、このメカニズムがヒトの老化制御・健康寿命延伸の新たな分子標的になり得ると指摘している。

<関連情報>

選択的スプライシング制御が寿命の最大化に及ぼす影響 The implications of alternative splicing regulation for maximum lifespan

Wei Jiang,Sika Zheng & Liang Chen
Nature Communications  Published:24 November 2025
DOI:https://doi.org/10.1038/s41467-025-65339-1

長寿動物の秘密をRNA編集から解明(New clues to why some animals live longer)

Abstract

Mammalian maximum lifespan (MLS) varies over a hundred-fold, yet the molecular mechanisms underlying this diversity remain unclear. We present a cross-species analysis of alternative splicing (AS) across six tissues in 26 mammals, identifying hundreds of conserved AS events significantly associated with MLS, with the brain containing twice as many tissue-specific events as peripheral tissues. MLS-AS events are enriched in pathways related to mRNA processing, stress response, neuronal functions, and epigenetic regulation, and are largely distinct from genes whose expression correlates with MLS, indicating that AS captures unique lifespan-related signals. The brain exhibits certain associations divergent from peripheral tissues and reduced overlap with body mass (BM)-associated splicing; neither is observed at the gene expression level. While MLS- and age-associated AS events show limited overlap, the shared events are enriched in intrinsically disordered protein regions, suggesting a role in protein flexibility and stress adaptability. Furthermore, MLS-associated AS events display stronger RNA-binding protein (RBP) motif coordination than age-associated ones, highlighting a more genetically programmed adaptation for lifespan determination, in contrast to the more variable splicing changes seen with chronological aging. These findings suggest alternative splicing as a distinct, transcription-independent axis of lifespan regulation, offering insights into the molecular basis of longevity.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました