加齢と疾患をつなぐ細胞内ネットワークを発見(Uncovering the hidden cellular connections that bridge aging and disease)

ad

2025-11-18 イェール大学

イェール大学の研究チームは、老化と多様な疾患をつなぐ「隠れた細胞ネットワーク」を大規模データ解析により発見した。研究者らはヒト組織由来の数千万細胞規模の単一細胞データを統合し、加齢に伴う細胞間コミュニケーションの変化を網羅的に解析。その結果、老化は個々の細胞の劣化だけでなく、細胞同士のシグナル伝達ネットワークが崩れることで臓器機能が低下することが明らかとなった。特に炎症関連経路や線維化に関わる細胞間信号の異常強化が、糖尿病、心血管疾患、アルツハイマー病など、多くの加齢関連疾患の発症と共通していることを発見した。また、これらのネットワーク異常の中には、薬剤介入の可能性がある“ハブ分子”も見つかり、新たな治療標的となる可能性が示された。本成果は、老化を「全身的ネットワークの変調」として捉え直す重要な知見であり、加齢関連疾患の予防・治療の新戦略につながる。

加齢と疾患をつなぐ細胞内ネットワークを発見(Uncovering the hidden cellular connections that bridge aging and disease)
(Illustration by Michael S. Helfenbein)

<関連情報>

健康なドナーの組織学的画像に基づく機械学習モデルは、imageQTLを識別し、年齢を予測します Machine-learning models based on histological images from healthy donors identify imageQTLs and predict chronological age

Ran Meng, William Zhu, Christopher J. F. Cameron, +3 , and Mark B. Gerstein
Proceedings of the National Academy of Sciences  Published:November 11, 2025
DOI:https://doi.org/10.1073/pnas.2423469122

Significance

This study establishes a comprehensive framework that links histological image features to genotype, transcriptome, and chronological age in large-scale healthy tissue datasets, providing valuable insights into tissue morphology. By identifying 906 significant, interpretable image quantitative trait loci (imageQTLs) and conducting differential expression analysis based on image features, we enhance understanding of genetic and morphological interactions. Additionally, we developed predictive models for both gene expression and chronological age from raw histological images, introducing an approach to studying age-related tissue-specific changes and presenting a model to demonstrate the predictability of age from histological images.

Abstract

Histological images offer a wealth of data. Mining these data holds significant potential for enhancing disease diagnosis and prognosis, though challenges remain, especially in noncancer contexts. In this study, we developed a statistical framework that links raw histological images and their derived features to the genotype, transcriptome, and chronological age of the samples. We first demonstrated an association between image features and genotypes, identifying 906 image quantitative trait loci (imageQTLs) significantly associated with image features. Next, we identified differentially expressed (DE) genes by stratifying samples into image-similar groups based on image features and performing DE comparisons between groups. Additionally, we developed a deep-learning model that accurately predicts gene expression in specific tissues from raw images and their features, highlighting gene sets associated with observed morphological changes. Finally, we constructed another deep-learning model to predict chronological age directly from raw images and their features, revealing relationships between age and tissue morphology, especially aspects derived from nucleus features. Both models are supported by a computational approach that greatly compresses gigapixel whole-slide images and extracts interpretable nucleus features, integrating both large-scale tissue morphology and smaller local structures. We have made all interpretable nucleus features, imageQTLs, DE genes, and deep-learning models available as online resources for further research.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました