歪みのない組織透明化技術の突破で3Dニューロン構造を可視化(Breakthrough in distortion-free tissue transparency reveals neurons in 3D)

ad

2025-12-02 清華大学

清華大学の研究チームは、生体組織を変形させずに透明化できる新手法 VIVIT(vitreous ionic-liquid-solvent-based volumetric inspection of trans-scale biostructure)を開発した。従来の透明化法は溶媒による膨潤・収縮や蛍光の減弱が問題だったが、VIVIT は特殊イオン液体 APIL を用い、氷結せずガラス状に固化させる“急速ガラス化”により構造を完全に保持する。さらに光散乱を大幅に低減し、深部までの高解像度 3D 観察を可能にしただけでなく、蛍光強度をむしろ増強する効果も確認された。マウス脳を光シート顕微鏡で全脳3D撮像した後、薄切片を高解像度で再構築することで、視覚・聴覚情報を別経路で伝える視床ニューロンの詳細な配線が初めて入力から出力まで立体的に追跡された。ヒト脳組織でも抑制性回路の新知見が得られ、今後は AI 解析との統合により、神経科学、病理診断、創薬、空間オミクスなど多分野で大きな革新が期待される。

歪みのない組織透明化技術の突破で3Dニューロン構造を可視化(Breakthrough in distortion-free tissue transparency reveals neurons in 3D)
A new method for making tissues see-through without changing their structure is making it possible to image the details of neurons in 3D.

<関連情報>

VIVIT:イオン性ガラス組織を用いたスケールを超えた体積測定による生物学的構造の解明 VIVIT: Resolving trans-scale volumetric biological architectures via ionic glassy tissue

Yixiao Gao ∙ Fengyuan Xin,, ∙ Tao Wang ∙ … ∙ Kun Li ∙ Yichang Jia ∙ Kexin Yuan (苑克鑫)
Cell  Published:August 11, 2025
DOI:https://doi.org/10.1016/j.cell.2025.07.023

Highlights

  • VIVIT introduces ILs for tissue clearing with minimal distortion and high transparency
  • VIVIT preserves tissue from crystal damage at low temperatures
  • VIVIT enhances fluorescent signals from genetic and immunostained labels
  • VIVIT allows the revelation of trans-scale 3D biostructures

Summary

Biological structures across scales integrate seamlessly to perform essential functions. While various histological methods have been developed to reveal these intricate structures, preserving the integrity of large-volume architectures while revealing microstructures with high resolution remains a major challenge. Here, we introduce vitreous ionic-liquid-solvent-based volumetric inspection of trans-scale biostructure (VIVIT), a 3D histological method leveraging the chemical properties of ionic liquids. VIVIT transforms biological tissue into an ionic glassy state, which enables optical clearing with minimal distortion and high transparency, preserves tissue from low-temperature crystal damage, and amplifies fluorescent signals from both genetically encoded and immunostained labels, thus yielding precise and reliable mapping of fluorescent signals within intact 3D architectures. Using VIVIT, we demonstrate the link between the modality of synaptic inputs to multisensory thalamic neurons and the targets of their brain-wide outputs and identified aspects of inhibitory control in the human cortex. VIVIT thus offers opportunities to elucidate the organizational principles underlying trans-scale biostructures.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました