微生物の“進化を加速” ―実験進化と量子ビームで切り拓く未来のものづくり―~医薬品からバイオ燃料まで、産業微生物の潜在力を引き出す新技術を開発~

ad

2025-12-05 量子科学技術研究開発機構

国立研究開発法人量子科学技術研究開発機構(QST)は、微生物の進化を加速し、望ましい性質を効率的に獲得する新技術を開発した。細菌や酵母などの産業微生物は医薬品、発酵食品、バイオ燃料などに広く利用されているが、従来の変異誘発法では、生育に悪影響を持つ変異も多く、高機能株の取得は困難であった。研究チームは、人工環境で長期培養し適応変異を促す「実験進化」と、多様な変異を導入できるガンマ線の「繰り返し照射」を組み合わせた。根粒菌をモデルに検証したところ、約3カ月の培養と週1回の照射で、高温耐性を獲得するとともに、従来法で問題となった至適温度での増殖低下も回避された。さらに、高温耐性株には共通の複数遺伝子に有益な変異が蓄積していた。本手法は多様な産業微生物に応用可能で、発酵効率向上、医薬品生産性改善、バイオ燃料製造の省エネ化など、持続可能なものづくりに貢献すると期待される。

微生物の“進化を加速” ―実験進化と量子ビームで切り拓く未来のものづくり―~医薬品からバイオ燃料まで、産業微生物の潜在力を引き出す新技術を開発~図1 「従来法」と「事件進化+くり返し照射」の違い

<関連情報>

ガンマ線照射によるBradyrhizobium diazoefficiensの繰り返し人工変異誘発は高温耐性の獲得を促進する Repeated artificial mutagenesis of Bradyrhizobium diazoefficiens by gamma irradiation accelerates the acquisition of high-temperature tolerance

Yoshihiro Hase, Ikuko Nagafune, Katsuya Satoh
Mutation Research – Fundamental and Molecular Mechanisms of Mutagenesis  Available online: 19 November 2025
DOI:https://doi.org/10.1016/j.mrfmmm.2025.111919

Highlights

  • Repeated gamma irradiation accelerated the acquisition of high-temperature tolerance.
  • High-temperature-tolerant Bradyrhizobium diazoefficiens mutants were obtained.
  • Optimal mutagenesis conditions for accumulating beneficial mutations were revealed.

Abstract

Effective mutant screening is critical for improving industrial microorganisms. This study was conducted to evaluate the effect of repeated mutagenesis with gamma rays on the experimental evolution of rhizobial high-temperature tolerance. Wild-type Bradyrhizobium diazoefficiens USDA110 cells grow optimally at 32-34 °C, but their growth is markedly retarded at 36 °C. Wild-type cells were subcultured in a 96-well deep-well plate for 76 or 83 days, with a gradual increase in temperature from 34.0 to 37.0 °C. Additionally, they were exposed to gamma radiation (1–120 Gy, 10 times in total) during the experimental period. The 40-Gy and 80-Gy treatments generated the most lines with high-temperature-tolerance. However, after extended subculturing without mutagenesis, tolerant lines obtained following the 80-Gy treatment produced smaller colonies than tolerant lines obtained after the 40-Gy treatment, suggesting the accumulation of deleterious mutations. These results imply that approximately 40 Gy is the appropriate dose for accumulating beneficial mutations under our experimental conditions. The two most tolerant lines obtained via the 30-Gy treatment commonly had a mutation in the 16S ribosomal RNA gene and the DNA-directed RNA polymerase subunit beta′ gene (rpoC), possibly reflecting a strong relationship with high-temperature tolerance. The optimal mutagenesis conditions for accumulating beneficial mutations were discussed based on the number of induced mutations in the population.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました