乳房超音波検査の偽陽性を減らす新技術を開発(New tech reduces false positives from breast ultrasounds)

ad

2025-12-17 ジョンズ・ホプキンス大学(JHU)

米ジョンズ・ホプキンス大学(JHU)の研究チームは、乳房超音波検査における偽陽性(誤ってがんと判定されるケース)を大幅に減らす新技術を開発した。乳房超音波は高濃度乳腺を持つ女性の検診に有用だが、偽陽性率が高く、不必要な生検や心理的負担が課題となってきた。本研究では、超音波画像に含まれる微細な組織の動きや機械的特性を解析する新たな画像処理・解析手法を導入し、良性病変と悪性腫瘍の識別精度を向上させた。その結果、がん検出感度を維持したまま、不要な精密検査を大きく削減できることが示された。本技術は既存の超音波装置に追加可能で、臨床現場への導入が容易とされ、乳がん検診の精度向上と医療負担軽減に貢献することが期待される。

乳房超音波検査の偽陽性を減らす新技術を開発(New tech reduces false positives from breast ultrasounds)
Conventional ultrasound of breast tissue compared to the new method.Image credit: Johns Hopkins University

<関連情報>

短遅延空間コヒーレンス超音波に一般化コントラスト対ノイズ比を適用することで、乳腺嚢胞と固形腫瘤を区別できる Generalized contrast-to-noise ratio applied to short-lag spatial coherence ultrasound differentiates breast cysts from solid masses

Arunima Sharma, PhD;Eniola T Oluyemi, MD, MPH;Madhavi Tripathi, PhD;Emily B Ambinder, MD, MS;Lisa A Mullen, MD;Babita Panigrahi, MD;Joanna Rossi, MD, MPH;Nethra Venkatayogi, BS;Kelly S Myers, MD;Muyinatu A Lediju Bell, PhD
Radiology Advances  Published:24 October 2025
DOI:https://doi.org/10.1093/radadv/umaf037

Abstract

Background

Benefits of ultrasound in breast cancer detection are often limited by the similar appearance of complicated cysts and solid hypoechoic masses with B-mode imaging, which can lead to false positive diagnoses.

Purpose

To evaluate the diagnostic performance of generalized contrast-to-noise ratio (gCNR) on short-lag spatial coherence (SLSC) ultrasound images as an objective tool to improve complicated cyst vs solid mass classification.

Materials and Methods

For this secondary analysis of a prospective recruitment for the Advanced Ultrasound Signal Processing of Suspicious Breast Images (AUSPICIOUS) observational study (NCT07206888), women scheduled for ultrasound-guided procedures or follow-up of at least 1 breast mass were enrolled from March 2018 to October 2023. Raw ultrasound data were acquired with an Alpinion ECUBE12R research scanner, then post-processed with our custom software. The primary evaluation indicator was gCNR applied to SLSC images with regions of interest determined by 6 radiologists. Outcomes were compared to the same radiologists classifying mass contents as solid, fluid, mixed, or uncertain using B-mode images. The reference standard was determined by aspiration, pathology, or characterization of image features. Areas under receiver operating characteristic curves (AUCs) with 95% confidence intervals (CIs) and inter-reader agreement (Fleiss’ κ) were assessed.

Results

Among 175 cases, 145 breast masses from 115 women (age: 52 ± 17 years) were analyzed, including 16 complicated cysts and 96 solid masses. The mean AUC for complicated cyst vs solid mass characterization was 0.96 (95% CI: 0.94, 0.97) with gCNR applied to SLSC images, relative to a mean lower-bound AUC of 0.67 (range: 0.54-0.76) with readings of B-mode images (P < .05). Inter-reader agreement improved from fair with B-mode (κ  =  0.40) to moderate with gCNR applied to SLSC images with a 0.76 threshold (κ  =  0.59, P < .00001).

Conclusion

Applying an objective gCNR metric to SLSC images improved the differentiation of complicated cysts from solid masses when compared to subjective readings of B-mode images.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました