量子機能化タンパク質の設計に成功:バイオテクノロジーの新たな地平を開く(Oxford team engineer quantum-enabled proteins, opening a new frontier in biotechnology)

ad

2026-01-21 オックスフォード大学

英国のオックスフォード大学の研究チームは、量子効果を利用するよう人工的に設計された「量子対応タンパク質」を創出し、バイオテクノロジーの新たな研究領域を切り開いた。従来、量子効果は光合成や酵素反応など自然界の一部の生命現象に関与すると考えられてきたが、本研究では量子トンネル効果や量子コヒーレンスを機能に組み込むようタンパク質構造を設計・制御することに成功した。研究チームは、計算設計と実験検証を組み合わせ、電子移動や反応効率を量子レベルで制御できることを示した。これにより、高感度バイオセンサー、効率的な触媒、量子情報と生体分子をつなぐ新型デバイスなどへの応用が期待される。本成果は、量子物理と生命科学を融合する量子バイオテクノロジーの可能性を実証する重要な一歩と位置付けられている。

量子機能化タンパク質の設計に成功:バイオテクノロジーの新たな地平を開く(Oxford team engineer quantum-enabled proteins, opening a new frontier in biotechnology)
Magneto-sensitive Fluorescent Proteins (MFP) can be excited by light, here delivered by a blue LED. They emit a fluorescent light of a different colour (green). The intensity of this fluorescence can be modulated by applying magnetic or radio frequency (RF) fields of appropriate strengths and frequency. Credit: Gabriel Abrahams.

<関連情報>

マルチモーダルセンシングのための人工タンパク質における量子スピン共鳴 Quantum spin resonance in engineered proteins for multimodal sensing

Gabriel Abrahams,Ana Štuhec,Vincent Spreng,Robin Henry,Idris Kempf,Jessica James,Kirill Sechkar,Scott Stacey,Vicente Trelles-Fernandez,Lewis M. Antill,Christiane R. Timmel,Jack J. Miller,Maria Ingaramo,Andrew G. York,Jean-Philippe Tetienne & Harrison Steel
Nature  Published:21 January 2026
DOI:https://doi.org/10.1038/s41586-025-09971-3

Abstract

Sensing technologies that exploit quantum phenomena for measurement are finding increasing applications across materials, physical and biological sciences1,2,3,4,5,6,7. Until recently, biological candidates for quantum sensors were limited to in vitro systems, had poor sensitivity and were prone to light-induced degradation. These limitations impeded practical biotechnological applications, and high-throughput study that would facilitate their engineering and optimization. We recently developed a class of magneto-sensitive fluorescent proteins including MagLOV, which overcomes many of these challenges8. Here we show that through directed evolution, it is possible to engineer these proteins to alter the properties of their response to magnetic fields and radio frequencies. We find that MagLOV exhibits optically detected magnetic resonance in living bacterial cells at room temperature, at sufficiently high signal-to-noise for single-cell detection. These effects are explained through the radical-pair mechanism, which involves the protein backbone and a bound flavin cofactor. Using optically detected magnetic resonance and fluorescence magnetic-field effects, we explore a range of applications, including spatial localization of fluorescence signals using gradient fields (that is, magnetic resonance imaging using a genetically encoded probe), sensing of the molecular microenvironment, multiplexing of bio-imaging and lock-in detection, mitigating typical biological imaging challenges such as light scattering and autofluorescence. Taken together, our results represent a suite of sensing modalities for engineered biological systems, based on and designed around understanding the quantum-mechanical properties of magneto-sensitive fluorescent proteins.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました