細菌が泳ぐ仕組みの新発見で、病気の拡大防止や治療の改善に役立つ可能性(New Discovery on How Bacteria Swim Could Help Prevent the Spread of Disease and Improve Medical Treatments)

ad
ad

2022-04-04 ミネソタ大学

・小さな固体粒子を含む流体の中をバクテリアがどのように移動するかを初めて研究しました。
・ミネソタ大学ツインシティの研究者が率いるチームは、人体のようなさまざまな複雑な液体や環境の中をバクテリアがどのように泳ぐかを発見しました。
・この発見は、細菌が原因となる病気の新しい治療法の開発や、細菌を利用して人体に薬剤を送達するシステムの設計に役立つ可能性があります。
この研究は、「Nature」に掲載されました。

<関連情報>

複合流体のコロイド性が細菌の運動性を高める The colloidal nature of complex fluids enhances bacterial motility

Shashank Kamdar,Seunghwan Shin,Premkumar Leishangthem,Lorraine F. Francis,Xinliang Xu & Xiang Cheng
Nature Published: DOI: 10.1038/s41586-022-04509-3

Abstract

The natural habitats of microorganisms in the human microbiome, ocean and soil ecosystems are full of colloids and macromolecules. Such environments exhibit non-Newtonian flow properties, drastically affecting the locomotion of microorganisms1,2,3,4,5. Although the low-Reynolds-number hydrodynamics of swimming flagellated bacteria in simple Newtonian fluids has been well developed6,7,8,9, our understanding of bacterial motility in complex non-Newtonian fluids is less mature10,11. Even after six decades of research, fundamental questions about the nature and origin of bacterial motility enhancement in polymer solutions are still under debate12,13,14,15,16,17,18,19,20,21,22,23. Here we show that flagellated bacteria in dilute colloidal suspensions display quantitatively similar motile behaviours to those in dilute polymer solutions, in particular a universal particle-size-dependent motility enhancement up to 80% accompanied by a strong suppression of bacterial wobbling18,24. By virtue of the hard-sphere nature of colloids, whose size and volume fraction we vary across experiments, our results shed light on the long-standing controversy over bacterial motility enhancement in complex fluids and suggest that polymer dynamics may not be essential for capturing the phenomenon12,13,14,15,16,17,18,19,20,21,22,23. A physical model that incorporates the colloidal nature of complex fluids quantitatively explains bacterial wobbling dynamics and mobility enhancement in both colloidal and polymeric fluids. Our findings contribute to the understanding of motile behaviours of bacteria in complex fluids, which are relevant for a wide range of microbiological processes25 and for engineering bacterial swimming in complex environments26,27.

タイトルとURLをコピーしました