2023-11-09 ノースウェスタン大学
◆最新の研究では、特製の装置が現場で酸素を生成し、これにより生体内の細胞を長期間生かすことが可能になりました。続く実験では、新しいデバイス(ecO2)が、低酸素環境下で人工的に培養された細胞の約70〜80%をほぼ1か月間、生存させたとされ、これは有望な結果です。
<関連情報>
- https://news.northwestern.edu/stories/2023/11/a-breath-of-fresh-air-keeps-drug-producing-cells-alive-longer/
- https://www.nature.com/articles/s41467-023-42697-2
移植細胞を用いた治療のための電極触媒によるオンサイト酸素化 Electrocatalytic on-site oxygenation for transplanted cell-based-therapies
Inkyu Lee,Abhijith Surendran,Samantha Fleury,Ian Gimino,Alexander Curtiss,Cody Fell,Daniel J. Shiwarski,Omar Refy,Blaine Rothrock,Seonghan Jo,Tim Schwartzkopff,Abijeet Singh Mehta,Yingqiao Wang,Adam Sipe,Sharon John,Xudong Ji,Georgios Nikiforidis,Adam W. Feinberg,Josiah Hester,Douglas J. Weber,Omid Veiseh,Jonathan Rivnay & Tzahi Cohen-Karni
Nature Communications Published:09 November 2023
DOI:https://doi.org/10.1038/s41467-023-42697-2
Abstract
Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.