運転中の糖尿病早期警告システムとしてのAIモデル(AI model as diabetes early warning system when driving)

ad

2024-02-07 ミュンヘン大学(LMU)

最近の研究では、低血糖症の検出に新しい方法が提案された。この研究は、運転中に低血糖症を検出することを目的として、30人の糖尿病患者がリアルな車を運転する際のデータを収集した。各患者について、通常の血糖値と低血糖症の状態で1回ずつデータが記録され、医療専門家によって意図的に低血糖症の状態になるように誘導された。収集されたデータには、車の速度や頭部/視線の動きなどの運転シグナルが含まれていた。

<関連情報>

生体信号から健康状態を推測する機械学習 – 実車運転中の糖尿病患者の低血糖を検出 Machine Learning to Infer a Health State Using Biomedical Signals — Detection of Hypoglycemia in People with Diabetes while Driving Real Cars

Vera Lehmann, M.D., Ph.D. , Thomas Zueger, M.D. , Martin Maritsch, Ph.D. , Michael Notter , Simon Schallmoser, M.Sc. , Caterina Bérubé, Ph.D. , Caroline Albrecht, M.D. , +7, and Christoph Stettler, M.D.
New England Journal of Medicine AI  Published January 31, 2024
DOI: 10.1056/AIoa2300013
運転中の糖尿病早期警告システムとしてのAIモデル(AI model as diabetes early warning system when  driving) | テック・アイ生命科学

Abstract

BACKGROUND
Hypoglycemia, one of the most dangerous acute complications of diabetes, poses a substantial risk for vehicle accidents. To date, both reliable detection and warning of hypoglycemia while driving remain unmet needs, as current sensing approaches are restricted by diagnostic delay, invasiveness, low availability, and high costs. This research aimed to develop and evaluate a machine learning (ML) approach for the detection of hypoglycemia during driving through data collected on driving characteristics and gaze/head motion.

METHODS
We collected driving and gaze/head motion data (47,998 observations) during controlled euglycemia and hypoglycemia from 30 individuals with type 1 diabetes (24 male participants; mean ±SD age, 40.1±10.3 years; mean glycated hemoglobin value, 6.9±0.7% [51.9±8.0 mmol/mol]) while participants drove a real car. ML models were built and evaluated to detect hypoglycemia solely on the basis of data regarding driving characteristics and gaze/head motion.

RESULTS
The ML approach detected hypoglycemia with high accuracy (area under the receiver-operating characteristic curve [AUROC], 0.80±0.11). When restricted to either driving characteristics or gaze/head motion data only, the detection performance remained high (AUROC, 0.73±0.07 and 0.70±0.16, respectively).

CONCLUSIONS
Hypoglycemia could be detected noninvasively during real car driving with an ML approach that used only data on driving characteristics and gaze/head motion, thus improving driving safety and self-management for people with diabetes. Interpretable ML also provided novel insights into behavioral changes in people driving while hypoglycemic. (Funded by the Swiss National Science Foundation and others; ClinicalTrials.gov numbers, NCT04569630 and NCT05308095.)

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました