AIで運動操作の細かさをモデル化(Modeling the minutia of motor manipulation with AI)

ad

2024-10-02 スイス連邦工科大学ローザンヌ校(EPFL)

EPFL教授アレクサンダー・マティス率いる研究チームは、手の動作を詳細にモデル化するAIアプローチを開発し、神経義肢やリハビリ技術の発展に貢献しました。彼らの手法は、カリキュラムベースの強化学習と生体力学シミュレーションを組み合わせ、手の動きに関する深い洞察を提供します。この研究は、手の運動制御の基礎的メカニズムを明らかにし、神経科学や義肢開発における重要な進展となる可能性があります。

<関連情報>

カリキュラムベースの強化学習で筋骨格系スキルを習得する Acquiring musculoskeletal skills with curriculum-based reinforcement learning

Alberto Silvio Chiappa∙ Pablo Tano∙ Nisheet Patel∙ Abigaïl Ingster∙ Alexandre Pouget∙ Alexander Mathis
Neuron  Published:October 1, 2024
DOI:https://doi.org/10.1016/j.neuron.2024.09.002

Graphical abstract

AIで運動操作の細かさをモデル化(Modeling the minutia of motor manipulation with AI)

Highlights

•We succeeded in training a musculoskeletal model on an object-manipulation task
•The static to dynamic stabilization (SDS) curriculum is inspired by coaching practice
•Akin to experimental data, SDS learns low-dimensional kinematic and kinetic spaces
•Learned muscle synergies are highly task specific and thus generalize poorly

Summary

Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to tackle the grand challenge of understanding biological motor control. Our winning solution for the inaugural NeurIPS MyoChallenge leverages an approach mirroring human skill learning. Using a novel curriculum learning approach, we trained a recurrent neural network to control a realistic model of the human hand with 39 muscles to rotate two Baoding balls in the palm of the hand. In agreement with data from human subjects, the policy uncovers a small number of kinematic synergies, even though it is not explicitly biased toward low-dimensional solutions. However, selectively inactivating parts of the control signal, we found that more dimensions contribute to the task performance than suggested by traditional synergy analysis. Overall, our work illustrates the emerging possibilities at the interface of musculoskeletal physics engines, reinforcement learning, and neuroscience to advance our understanding of biological motor control.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました