AIは病院が品質報告書を作成する方法を変える可能性がある(Study: AI Could Transform How Hospitals Produce Quality Reports)

ad

2024-10-21 カリフォルニア大学サンディエゴ校(UCSD)

AIは病院が品質報告書を作成する方法を変える可能性がある(Study: AI Could Transform How Hospitals Produce Quality Reports)
New pilot study examines AI tools to streamline reporting processes in a hospital setting that could enhance health care delivery and improve access to quality data. Photo credit: Getty Images

カリフォルニア大学サンディエゴ校の研究によるパイロットスタディで、AIが病院の品質報告プロセスを効率化し、医療の質を向上させる可能性が示されました。この研究では、大規模言語モデル(LLM)を使用し、手動報告と90%の一致率で正確に病院品質指標を処理できることが確認されました。AIを用いることで、従来数週間かかっていた複雑な報告作業を数秒で完了させることができ、医療提供の効率性と患者体験の向上が期待されています。

<関連情報>

大規模な言語モデルにより、病院の品質指標の報告を効率化 Large Language Models for More Efficient Reporting of Hospital Quality Measures

Aaron Boussina, Ph.D., Rishivardhan Krishnamoorthy, M.S., Kimberly Quintero, R.N., M.S., Shreyansh Joshi, Gabriel Wardi, M.D., Hayden Pour, M.S., Nicholas Hilbert, R.N., M.S.N
NEJM AI  Published October 21, 2024
DOI: 10.1056/AIcs2400420

Abstract

Hospital quality measures are a vital component of a learning health system, yet they can be costly to report, statistically underpowered, and inconsistent due to poor interrater reliability. Large language models (LLMs) have recently demonstrated impressive performance on health care–related tasks and offer a promising way to provide accurate abstraction of complete charts at scale. To evaluate this approach, we deployed an LLM-based system that ingests Fast Healthcare Interoperability Resources data and outputs a completed Severe Sepsis and Septic Shock Management Bundle (SEP-1) abstraction. We tested the system on a sample of 100 manual SEP-1 abstractions that University of California San Diego Health reported to the Centers for Medicare & Medicaid Services in 2022. The LLM system achieved agreement with manual abstractors on the measure category assignment in 90 of the abstractions (90%; κ=0.82; 95% confidence interval, 0.71 to 0.92). Expert review of the 10 discordant cases identified four that were mistakes introduced by manual abstraction. This pilot study suggests that LLMs using interoperable electronic health record data may perform accurate abstractions for complex quality measures. (Funded by the National Institute of Allergy and Infectious Diseases [1R42AI177108-1] and others.)

.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました