「コナン・ザ・バクテリウム」はいかにして極度の放射線に耐えたか?(How ‘Conan the Bacterium’ withstands extreme radiation)

ad

2024-12-09 ノースウェスタン大学

「コナン・ザ・バクテリウム」はいかにして極度の放射線に耐えたか?(How ‘Conan the Bacterium’ withstands extreme radiation)A new study reveals the secret to the antioxidant that allows the bacteria Deinococcus radiodurans to withstand radiation doses 28,000 times greater than what would kill a human.

デイノコッカス・ラジオデュランス(通称「コンアン・ザ・バクテリアム」)は、放射線に対する驚異的な耐性を持つ細菌として知られています。この細菌は、マンガンイオン、リン酸、短いペプチドからなる強力な抗酸化物質を生成し、放射線による損傷から細胞を保護します。この発見は、宇宙飛行士の宇宙放射線からの防護や、放射線緊急事態への対策、新たなワクチンの開発などに応用できる可能性があります。

<関連情報>

Mn2+、合成デカペプチドDP1(DEHGTAVMLK)、オルトリン酸の三元複合体は優れた抗酸化物質である The ternary complex of Mn2+, synthetic decapeptide DP1 (DEHGTAVMLK), and orthophosphate is a superb antioxidant

Hao Yang, Ajay Sharma, Michael J. Daly, and Brian M. Hoffman
Proceedings of the National Academy of Sciences  Published:December 12, 2024
DOI:https://doi.org/10.1073/pnas.2417389121

Significance

This study reveals the mechanism for protein radioprotection by the superb Mn-based MDP antioxidant containing Pi and decapeptide DP1, designed through considerations of Deinococcus radiodurans low molecular-weight Mn-antioxidants: The exceptionally active antioxidant in MDP is shown to be a Mn2+ (Pi/DP1) ternary complex, which, protects enzymes from radiation doses far exceeding the capabilities of Mn2+-Pi complexes alone. Substitutionally labile calcium ions coaccumulate with Mn in Mn-dependent organisms, and as an illuminating parallel, 1H NMR of DP1 is used to measure its affinity for diamagnetic Ca2+, whose coordination chemistry parallels that of paramagnetic Mn2+. These findings could unlock new strategies for enhancing cellular oxidative-stress resistance, spur the development of radiation-inactivated whole-cell vaccines, and potentially lead to other medical advances.

Abstract

Mn2+ coordinated by orthophosphate (Pi), metabolites, or peptides acts as a superoxide dismutase (SOD), and these Mn antioxidant complexes are universally accumulated in extremely radiation-resistant cell types across the tree of life. This behavior prompted design of decapeptide DP1 (DEHGTAVMLK) as a Mn2+ ligand, and development of a highly potent Mn2+-antioxidant (MDP) containing [Pi] = 25 mM, and [DP1] = 3 mM, the ratio found in the radioresistant bacterium Deinococcus radiodurans, with [Mn2+] = 1 mM. MDP is an exceptional antioxidant, both in vitro and in vivo, and has reinvigorated the development of radiation-inactivated whole-cell vaccines. This study investigates the nature of the active Mn2+ complex in MDP. We measure the affinity of DP1 for the substitutionally labile Mn2+ ion using isothermal-titration calorimetry (ITC) and use changes in the Mn2+ solution EPR spectrum to determine affinities of Mn2+ for DP1 and for Pi, and to monitor Mn2+ ligation while titrated with the fixed Pi/DP1 ratio of MDP, 25/3, using ENDOR/ESEEM to characterize DP1 ligation to Mn2+. In parallel, 1H NMR of DP1 was used to monitor binding interactions between Pi and DP1, and DP1 binding to the diamagnetic Ca2+. We report: i) DP1 forms an extremely weak, dynamic Mn2+ complex (Ka ≈ 40 M-1) ii) Mn2+ binds Pi much more strongly (Ka ≈ 390 M-1) as shown previously, but iii) DP1 and Pi jointly bind to Mn2+ in MDP to form a ternary Mn2+ (Pi) (DP1) complex with greater formation-constant than Pi alone (Kaapp ≈ 670 M-1). It is this ternary complex that is the superb antioxidant in MDP.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました