超解像顕微鏡を共有し、ブラウン大学で画期的な脳研究を推進する方法(How a shared super-resolution microscope propels breakthrough brain research at Brown)

ad

2024-12-17 ブラウン大学

ブラウン大学のカーニー脳科学研究所では、最先端の超解像顕微鏡「Nikon SoRa CSU-W1」を活用し、神経科学の研究を推進しています。この顕微鏡は、従来の光学顕微鏡を超える高解像度で脳内、特にニューロン内の構造を詳細に観察することを可能にします。カーニー研究所の複数の研究室がこの装置を共有し、依存症、記憶、報酬系、脳の発達や機能に関する研究を進めています。例えば、神経科学の准教授であるカーラ・カウン氏の研究室では、ショウジョウバエの脳を用いて、アルコールやニコチン、メタンフェタミンなどの薬物がドーパミン受容体に与える影響を3Dで解析し、薬物依存のメカニズムを解明しようとしています。このように、SoRa顕微鏡の導入により、研究者たちは脳内の微細な変化を高精度で観察できるようになり、神経科学の新たな知見を得ることが期待されています。

<関連情報>

WFIKKN2は、多様なDCCファミリー受容体を介してシグナルを伝達する、2つの機能を持つ軸索ガイダンスキューである WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors

Kelsey R. Nickerson, Irene Tom, Elena Cortés, Jane R. Abolafia, Engin Özkan, Lino C. Gonzalez, Alexander Jaworsk
bioRxiv  Posted:June 15, 2023
DOI:https://doi.org/10.1101/2023.06.15.544950

Abstract

Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members – Punc, Nope, and Protogenin – for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring.

シナプスの機能的多様性を形成するCa2+チャネルと活性帯タンパク質の量は、入力特異的シナプス組織と交差する Ca2+ channel and active zone protein abundance intersects with input-specific synapse organization to shape functional synaptic diversity

Audrey T Medeiros,Scott J Gratzauthor,Ambar Delgado,Jason T Ritt,Kate M OConnor-Giles
eLife  Reviewed Preprint
v2:July 18, 2024
DOI:https://doi.org/10.7554/eLife.88412.2

超解像顕微鏡を共有し、ブラウン大学で画期的な脳研究を推進する方法(How a shared super-resolution microscope propels breakthrough brain research at Brown)

Abstract

Synaptic heterogeneity is a hallmark of nervous systems that enables complex and adaptable communication in neural circuits. To understand circuit function, it is thus critical to determine the factors that contribute to the functional diversity of synapses. We investigated the contributions of voltage-gated calcium channel (VGCC) abundance, spatial organization, and subunit composition to synapse diversity among and between synapses formed by two closely related Drosophila glutamatergic motor neurons with distinct neurotransmitter release probabilities (Pr). Surprisingly, VGCC levels are highly predictive of heterogeneous Pr among individual synapses of either low- or high-Pr inputs, but not between inputs. We find that the same number of VGCCs are more densely organized at high-Pr synapses, consistent with tighter VGCC-synaptic vesicle coupling. We generated endogenously tagged lines to investigate VGCC subunits in vivo and found that the α2δ-3 subunit Straightjacket along with the CAST/ELKS active zone (AZ) protein Bruchpilot, both key regulators of VGCCs, are less abundant at high-Pr inputs, yet positively correlate with Pr among synapses formed by either input. Consistently, both Straightjacket and Bruchpilot levels are dynamically increased across AZs of both inputs when neurotransmitter release is potentiated to maintain stable communication following glutamate receptor inhibition. Together, these findings suggest a model in which VGCC and AZ protein abundance intersects with input-specific spatial and molecular organization to shape the functional diversity of synapses.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました