心筋細胞内の電気信号を非侵襲的に読み取るAI技術(AI-driven Approach Reads Heart Cells’ Inner Electrical Signals from the Outside)

ad

2025-01-17 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校とスタンフォード大学の研究者が、心筋細胞内の電気信号を外部から非侵襲的に測定するAI技術を開発しました。従来の方法では細胞を傷つける必要がありましたが、この新しい手法は、外部信号から内部信号を再構築することで、高精度で非侵襲的な測定を実現します。心臓薬の副作用テストや個別化医療の可能性を広げ、動物実験の削減や薬開発の効率化にも寄与する技術です。他の細胞タイプにも応用を拡大予定です。

<関連情報>

インテリジェントな細胞内電気生理学: ナノ電極アレイ記録で学習させた物理情報付きディープラーニングモデルを用いた細胞内活動電位の再構築 Intelligent in-cell electrophysiology: Reconstructing intracellular action potentials using a physics-informed deep learning model trained on nanoelectrode array recordings

Keivan Rahmani,Yang Yang,Ethan Paul Foster,Ching-Ting Tsai,Dhivya Pushpa Meganathan,Diego D. Alvarez,Aayush Gupta,Bianxiao Cui,Francesca Santoro,Brenda L. Bloodgood,Rose Yu,Csaba Forro & Zeinab Jahed
Nature Communications  Published:14 January 2025
DOI:https://doi.org/10.1038/s41467-024-55571-6

心筋細胞内の電気信号を非侵襲的に読み取るAI技術(AI-driven Approach Reads Heart Cells’ Inner Electrical Signals from the Outside)

Abstract

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells’ electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput. However, accessing intracellular potentials with NEAs remains challenging. This study presents an AI-supported technique that leverages thousands of synchronous eAP and iAP pairs from stem-cell-derived cardiomyocytes on NEAs. Our analysis revealed strong correlations between specific eAP and iAP features, such as amplitude and spiking velocity, indicating that extracellular signals could be reliable indicators of intracellular activity. We developed a physics-informed deep learning model to reconstruct iAP waveforms from extracellular recordings recorded from NEAs and Microelectrode arrays (MEAs), demonstrating its potential for non-invasive, long-term, high-throughput drug cardiotoxicity assessments. This AI-based model paves the way for future electrophysiology research across various cell types and drug interactions.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました