生成AIを活用しDNAの3D構造を迅速に予測する新技術を開発 (With Generative AI, MIT Chemists Quickly Calculate 3D Genomic Structures)

ad

2025-01-31 マサチューセッツ工科大学(MIT)

マサチューセッツ工科大学(MIT)の化学者チームは、生成的人工知能(AI)を活用して、DNA配列から細胞核内での三次元構造を迅速に予測する新手法を開発しました。従来の実験的手法では数日を要していた解析が、この技術により数分で数千の構造を予測可能となりました。このアプローチにより、ゲノムの三次元構造が個々の細胞の遺伝子発現パターンや機能にどのように影響するかを、より容易に研究できるようになります。

<関連情報>

ChromoGen: 拡散モデルが単一細胞のクロマチン構造を予測する ChromoGen: Diffusion model predicts single-cell chromatin conformations

Greg Schuette, Zhuohan Lao, and Bin Zhang
Science Advances  Published:31 Jan 2025

生成AIを活用しDNAの3D構造を迅速に予測する新技術を開発 (With Generative AI, MIT Chemists Quickly Calculate 3D Genomic Structures)

Abstract

Breakthroughs in high-throughput sequencing and microscopic imaging technologies have revealed that chromatin structures vary considerably between cells of the same type. However, a thorough characterization of this heterogeneity remains elusive due to the labor-intensive and time-consuming nature of these experiments. To address these challenges, we introduce ChromoGen, a generative model based on state-of-the-art artificial intelligence techniques that efficiently predicts three-dimensional, single-cell chromatin conformations de novo with both region and cell type specificity. These generated conformations accurately reproduce experimental results at both the single-cell and population levels. Moreover, ChromoGen successfully transfers to cell types excluded from the training data using just DNA sequence and widely available DNase-seq data, thus providing access to chromatin structures in myriad cell types. These achievements come at a remarkably low computational cost. Therefore, ChromoGen enables the systematic investigation of single-cell chromatin organization, its heterogeneity, and its relationship to sequencing data, all while remaining economical.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました