生物学的パターン:タンパク質貯蔵庫による安定性(Biological patterns: stability through protein reservoirs)

ad

2025-05-05 ミュンヘン大学(LMU)

ミュンヘン大学の研究チームは、細胞内でのタンパク質パターン形成において、細胞質中のタンパク質濃度が「リザーバー」として機能し、膜上のパターンの安定性と方向性を制御していることを発見しました。大腸菌のMinタンパク質系を用い、マイクロ流体装置と理論モデルで化学反応と拡散・流れの相互作用を解析した結果、細胞質中の濃度比がパターンの移動方向を決定することが示されました。この成果は、細胞の自己組織化メカニズムの理解を深め、合成生物学や細胞工学への応用が期待されます。

<関連情報>

生体内におけるMinタンパク質のロバストかつ資源最適な動的パターン形成 Robust and resource-optimal dynamic pattern formation of Min proteins in vivo

Ziyuan Ren,Henrik Weyer,Michael Sandler,Laeschkir Würthner,Haochen Fu,Chanin B. Tangtartharakul,Dongyang Li,Cindy Sou,Daniel Villarreal,Judy E. Kim,Erwin Frey & Suckjoon Jun
Nature Physics  Published:05 May 2025
DOI:https://doi.org/10.1038/s41567-025-02878-w

生物学的パターン:タンパク質貯蔵庫による安定性(Biological patterns: stability through protein reservoirs)

Abstract

The Min protein system prevents abnormal cell division in bacteria by forming oscillatory patterns between cell poles. However, predicting the protein concentrations at which oscillations start and whether cells can maintain them under physiological perturbations remains challenging. Here we show that dynamic pattern formation is robust across a wide range of Min protein levels and variations in the growth physiology using genetically engineered Escherichia coli strains. We modulate the expression of minCD and minE under fast- and slow-growth conditions and build a MinD versus MinE phase diagram that reveals dynamic patterns, including travelling and standing waves. We found that the natural expression level of Min proteins is resource-optimal and robust to changes in protein concentration. In addition, we observed an invariant wavelength of dynamic Min patterns across the phase diagram. We explain the experimental findings quantitatively with biophysical theory based on reaction–diffusion models that consider the switching of MinE between its latent and active states, indicating its essential role as a robustness module for Min oscillation in vivo. Our results underline the potential of integrating quantitative cell physiology and biophysical modelling to understand the fundamental mechanisms controlling cell division machinery, and they offer insights applicable to other biological processes.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました