AIががん治療選択を迅速・効率化する手法を実証(Study Shows How AI Could Help Pathologists Match Cancer Patients to the Right Treatments―Faster and More Efficiently)

ad

2025-07-09 マウントサイナイ医療システム (MSHS)

AIががん治療選択を迅速・効率化する手法を実証(Study Shows How AI Could Help Pathologists Match Cancer Patients to the Right Treatments―Faster and More Efficiently)

Credit: Campanella, et al., Nature Medicine

マウントサイナイ医科大学とMSKCCの研究により、AIが肺腺がん患者の遺伝子変異(特にEGFR)を病理スライド画像から高精度に予測できることが判明。これにより迅速遺伝子検査の一部を省略し、貴重な腫瘍組織を保存しながら診断を加速できる可能性がある。実際の患者サンプルを用いた「サイレントトライアル」で、AIはEGFR変異を約40%の症例で迅速検査なしに正確に検出した。今後は多施設展開と他のバイオマーカーへの拡張も目指している。

<関連情報>

肺がんバイオマーカー検出のためのファインチューニング病理基盤モデルの実世界展開 Real-world deployment of a fine-tuned pathology foundation model for lung cancer biomarker detection

Gabriele Campanella,Neeraj Kumar,Swaraj Nanda,Siddharth Singi,Eugene Fluder,Ricky Kwan,Silke Muehlstedt,Nicole Pfarr,Peter J. Schüffler,Ida Häggström,Noora Neittaanmäki,Levent M. Akyürek,Alina Basnet,Tamara Jamaspishvili,Michel R. Nasr,Matthew M. Croken,Fred R. Hirsch,Arielle Elkrief,Helena Yu,Orly Ardon,Gregory M. Goldgof,Meera Hameed,Jane Houldsworth,Maria Arcila,… Chad Vanderbilt
Nature Medicine  Published:09 July 2025
DOI:https://doi.org/10.1038/s41591-025-03780-x

Abstract

Artificial intelligence models using digital histopathology slides stained with hematoxylin and eosin offer promising, tissue-preserving diagnostic tools for patients with cancer. Despite their advantages, their clinical utility in real-world settings remains unproven. Assessing EGFR mutations in lung adenocarcinoma demands rapid, accurate and cost-effective tests that preserve tissue for genomic sequencing. PCR-based assays provide rapid results but with reduced accuracy compared with next-generation sequencing and require additional tissue. Computational biomarkers leveraging modern foundation models can address these limitations. Here we assembled a large international clinical dataset of digital lung adenocarcinoma slides (N = 8,461) to develop a computational EGFR biomarker. Our model fine-tunes an open-source foundation model, improving task-specific performance with out-of-center generalization and clinical-grade accuracy on primary and metastatic specimens (mean area under the curve: internal 0.847, external 0.870). To evaluate real-world clinical translation, we conducted a prospective silent trial of the biomarker on primary samples, achieving an area under the curve of 0.890. The artificial-intelligence-assisted workflow reduced the number of rapid molecular tests needed by up to 43% while maintaining the current clinical standard performance. Our retrospective and prospective analyses demonstrate the real-world clinical utility of a computational pathology biomarker.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました