重篤な先天性筋疾患の新たな病態を解明~細胞内小器官の異常な集積が筋形成を妨げる~

ad

2025-08-25 京都大学

X連鎖性ミオチュブラーミオパチー(XLMTM)は、新生児期から重度の筋力低下を引き起こす先天性筋疾患で、根本的治療法は未確立である。京都大学の甲良謙伍医師、吉田健司助教、滝田順子教授、iPS細胞研究所の櫻井英俊准教授らの研究グループは、患者由来iPS細胞を用いた解析により、新たな病態メカニズムを発見した。研究では、細胞内の小器官リソソームが細胞辺縁に異常に集積し、成長促進シグナル「mTORC1」を過剰に活性化していることを確認。この異常活性が筋細胞の成熟(筋形成)を妨げ、重度の筋力低下につながることを突き止めた。さらに、mTORC1を阻害する薬剤を投与すると、筋分化障害が改善することを実証し、XLMTMに対して遺伝子治療とは異なる新規治療戦略の可能性を提示した。本成果は、リソソーム動態の異常という新しい視点から病態を解明したものであり、患者にとって有望な薬物療法の開発につながると期待される。研究成果は2025年7月29日付で国際誌『Brain』に掲載された。

重篤な先天性筋疾患の新たな病態を解明~細胞内小器官の異常な集積が筋形成を妨げる~

<関連情報>

X連鎖性ミオチューブラー筋ジストロフィーにおいて、異常なリソソーム動態がmTORC1シグナル伝達を介して筋形成を阻害する Aberrant lysosomal dynamics disrupt myogenesis via mTORC1 signalling in X-linked myotubular myopathy

Kengo Kora , Takeshi Yoshida , Atsushi Yokoyama , Kei Fujiwara , Naoko Yano , Taisei Kayaki , Satoshi Kajimoto , Kinuko Nishikawa , Hidetoshi Sakurai , Junko Takita
Brain  Published:29 July 2025
DOI:https://doi.org/10.1093/brain/awaf278

Abstract

X-linked myotubular myopathy is a severe congenital muscle disorder caused by pathogenic variants in the MTM1 gene, which encodes the phosphoinositide phosphatase myotubularin. Muscle biopsies from patients with X-linked myotubular myopathy exhibit distinctive histopathological features, including small, rounded myofibres with centrally located nuclei, indicating a developmental defect in muscle maturation. While earlier studies have indicated that myotubularin dysfunction causes dysregulation of mechanistic target of rapamycin complex 1 (mTORC1) signalling, the underlying mechanisms and phenotypic impact on human muscle cells remain poorly understood. Currently, there are no approved therapies available for the treatment of this disorder.

In this study, we established an induced pluripotent stem cell-based model of X-linked myotubular myopathy using two pairs of isogenic induced pluripotent stem cells: healthy-control versus MTM1-knockout and patient-derived versus gene-corrected induced pluripotent stem cells. Through MyoD-inducible myogenic differentiation, this model successfully recapitulates the key pathological features of X-linked myotubular myopathy, including elevated phosphatidylinositol-3-phosphate levels, hyperactivation of mTORC1 signalling, and increased expression of integrin-β1 and dynamin 2.

We identified impaired lysosomal dynamics as a novel pathogenic mechanism in X-linked myotubular myopathy. Our induced pluripotent stem cell-derived X-linked myotubular myopathy myotubes exhibited an abnormal redistribution of lysosomes, with peripheral accumulation, leading to abnormally activated mTORC1 signalling. FYCO1 knockdown, a key regulator of lysosomal trafficking, ameliorated this hyperactivation of mTORC1 signalling. Comprehensive transcriptome analysis revealed distinct gene expression patterns associated with altered mTORC1 signalling and lysosomal localisation in X-linked myotubular myopathy myotubes. Network analysis suggested the central role of the mTORC1 signalling pathway and its connections to disrupted muscle development and differentiation. To investigate the influence of mTORC1 signalling and myotubularin deficiency on myogenic differentiation, we established two mouse myoblast models: one with constitutively activated mTORC1 signalling and another with Mtm1 knockout. Increased mTORC1 signalling in mouse myoblasts impaired myogenic differentiation, and this impairment was reversed by mTORC1 inhibitor rapamycin. Notably, rapamycin treatment also ameliorated the impaired myogenic differentiation observed in Mtm1-knockout mouse myoblasts, supporting the causative role of mTORC1 hyperactivation in X-linked myotubular myopathy pathogenesis.

In conclusion, our findings establish the first human cell model of XLMTM, revealing that myotubularin deficiency leads to impaired lysosomal dynamics, which in turn causes mTORC1 dysregulation, a critical factor in the early stage of myogenic differentiation in X-linked myotubular myopathy. These findings provide new insights into the pathogenesis of X-linked myotubular myopathy and suggest that targeting mTORC1 signalling may be a promising therapeutic strategy for this debilitating disorder.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました