クロマチン構造と胚性高転写の関連を解明(Wei Xie’s group reports on the establishment of chromatin architecture interplays with embryo hypertranscription)

ad

2025-09-12 清華大学

清華大学・謝薇(Wei Xie)教授の研究グループは、マウス初期胚を対象に、クロマチン高次構造の再構築と「ハイパートランスクリプション」と呼ばれる転写活性化状態との相互作用を解明し、Nature誌に発表した。受精後、クロマチンのTADやコンパートメントは一時的に消失するが、ZGA(胚性ゲノム活性化)とともに再確立される。この過程で、建築因子CTCFは結合を維持しつつ、プロモーター近傍やSINE B2要素で異なる結合様式を示し、転写因子ADNPと競合する。一方、コヒーシンは1細胞期で結合が弱く、WAPLの高発現でループ形成が抑制されるが、発生に伴い復元する。特に2~8細胞期には「genic cohesin islands(GCI)」が活発転写遺伝子上に形成され、RNAポリメラーゼII依存的に維持される。GCIは絶縁体的役割を果たし、重要な発生制御遺伝子の安定発現を支える。コヒーシン抑制では発生停止が生じ、GCIの重要性が実証された。本研究は初期胚における転写と3次元ゲノム構造の相互形成機構を提示した。

クロマチン構造と胚性高転写の関連を解明(Wei Xie’s group reports on the establishment of chromatin architecture interplays with embryo hypertranscription)Figure 1. De novo establishment of chromatin architecture and its interplay with hypertranscription in early mouse embryos

<関連情報>

クロマチン構造の確立は胚の過剰転写と相互作用する Establishment of chromatin architecture interplays with embryo hypertranscription

Guang Yu,Kai Xu,Weikun Xia,Ke Zhang,Qianhua Xu,Lijia Li,Zili Lin,Ling Liu,Bofeng Liu,Zhenhai Du,Xia Chen,Qiang Fan,Fangnong Lai,Wenying Wang,Lijuan Wang,Feng Kong,Chao Wang,Haiqiang Dai,Huili Wang & Wei Xie
Nature  Published:13 August 2025
DOI:https://doi.org/10.1038/s41586-025-09400-5

Abstract

After fertilization, early embryos undergo dissolution of conventional chromatin organization, including topologically associating domains (TADs)1,2. Zygotic genome activation then commences amid unusually slow de novo establishment of three-dimensional chromatin architecture2. How chromatin organization is established and how it interplays with transcription in early mammalian embryos remain elusive. Here we show that CTCF occupies chromatin throughout mouse early development. By contrast, cohesin poorly binds chromatin in one-cell embryos, coinciding with TAD dissolution. Cohesin binding then progressively increases from two- to eight-cell embryos, accompanying TAD establishment. Unexpectedly, strong ‘genic cohesin islands’ (GCIs) emerge across gene bodies of active genes in this period. GCI genes enrich for cell identity and regulatory genes, display broad H3K4me3 at promoters, and exhibit strong binding of transcription factors and the cohesin loader NIPBL at nearby enhancers. We show that transcription is hyperactive in two- to eight-cell embryos and is required for GCI formation. Conversely, induced transcription can also create GCIs. Finally, GCIs can function as insulation boundaries and form contact domains with nearby CTCF sites, enhancing both the transcription levels and stability of GCI genes. These data reveal a hypertranscription state in early embryos that both shapes and is fostered by the three-dimensional genome organization, revealing an intimate interplay between chromatin structure and transcription.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました