細胞増殖法則を80年、180年越しに統一する原理を解明~複数栄養源の量が変化しても適用可能な代謝理論を構築~

ad

2025-10-10 理化学研究所,東京科学大学

理化学研究所と東京科学大学の共同研究チームは、細胞の増殖速度と栄養条件の関係を支配する統一原理「大域的制約原理」を発見した。これは、モノーの式(80年前)やリービッヒの最小律(180年前)といった古典的経験則を、細胞内代謝資源の配分という共通メカニズムから数学的に説明できることを示したもの。複数の栄養源が同時に変化する場合でも増殖速度を予測でき、従来理論の限界を超えた包括的代謝理論を構築した。この原理は、微生物やがん細胞の増殖理解を深めるとともに、発酵産業・バイオ燃料生産などへの応用が期待される。成果は『PNAS』誌に掲載。

細胞増殖法則を80年、180年越しに統一する原理を解明~複数栄養源の量が変化しても適用可能な代謝理論を構築~
「大域的制約原理」の模式図:リービッヒの”段々”樽(たる)

<関連情報>

微生物の増殖法則に対する全体的制約原理 Global constraint principle for microbial growth laws

Jumpei F. Yamagishi and Tetsuhiro S. Hatakeyama
Proceedings of the National Academy of Sciences  Published:October 3, 2025
DOI:https://doi.org/10.1073/pnas.2515031122

Significance

Cellular growth kinetics is a classical and fundamental problem in biology, traditionally described by Monod’s law. However, its universality has long remained uncertain. While the universal validity of this law itself is not argued, we prove that its key features—monotonicity and concavity in nutrient dependence—are universal consequences of intracellular resource allocation, providing a systematic theoretical basis for cellular growth kinetics. Unlike Monod’s model, which implies a local view centered on a single limiting reaction, our framework highlights global constraints on growth, thus generalizing the classical idea of Liebig’s law into a modern theory. By unifying these classical phenomenological laws of Monod and Liebig, our theory paves the way for a more comprehensive understanding of organismal growth.

Abstract

Understanding complex living systems requires identifying universal phenomenological laws that are independent of species and molecular-biological details. The Monod equation is a cornerstone of phenomenological microbial growth laws, depicting the growth rate as a saturating function of a single substrate. Because of its similarity in functional form to the Michaelis–Menten equation, cellular growth is often thought to be limited by a single reaction. However, cellular growth generically results from the coordination of thousands of metabolic reactions and diverse intracellular limited resources. Consequently, the mechanistic origins of the Monod equation remain controversial, and its extension has encountered limitations. Here, we propose the global constraint principle for cellular growth: As one nutrient becomes more available, other intracellular resources become limiting, driving transitions to distinct modes of resource allocation. Based on a general framework of constraint-based modeling and its dual formulations, we mathematically prove that, in general, microbial growth kinetics curves are monotonically increasing and concave with respect to nutrient availability. Numerical simulations using genome-scale Escherichia coli models with proteome allocation, molecular crowding, and membrane capacity constraints reproduce these features in a multiphasic manner. In contrast to the original Monod’s growth law, the global constraint principle also captures the dependence of microbial growth on the availability of multiple nutrients, by generalizing the Liebig’s law of the minimum, another phenomenological growth law for higher organisms, into a terraced landscape of diminishing returns. It thus integrates the classical phenomenological laws proposed by Monod and Liebig into a comprehensive theory of cellular growth.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました