超乾燥地域における土壌有機炭素蓄積を制御する微生物の生活史戦略(Microbial Life-history Strategy Regulates Soil Organic Carbon Accumulation in Hyper-arid Regions)

ad

2025-11-06 中国科学院(CAS)

中国科学院・新疆生態地理研究所の研究チームは、超乾燥地域における土地利用タイプごとの土壌有機炭素(SOC)蓄積メカニズムの違いを明らかにした。タクラマカン砂漠南縁の自然湿地、水田、砂漠ステップの3生態系を対象に、アミノ糖・リグニンフェノールのバイオマーカー解析、酵素活性測定、メタゲノム解析を行った。その結果、自然湿地はSOC量が最も多く、真菌由来を中心とした微生物ネクロマス炭素が約19.9% を占め、炭素の安定性が高いことが分かった。一方、水田ではSOCが最も少なく、主に植物由来炭素(28.7%)が中心で、プライミング効果により既存SOCの分解が促進されやすい。さらに、砂漠ステップでは乾燥・栄養制限により微生物ネクロマスが最少で、リグニン酸化が進むことで炭素安定性が低かった。研究は、湿地が乾燥地の炭素シンク維持に重要であること、水田管理では塩分制御と施肥バランスが長期的SOC蓄積に不可欠であることを示した。

超乾燥地域における土壌有機炭素蓄積を制御する微生物の生活史戦略(Microbial Life-history Strategy Regulates Soil Organic Carbon Accumulation in Hyper-arid Regions)
Soil organic carbon accumulation pathways in typical land-use types within a hyper-arid region. (Image by XIEG)

<関連情報>

極度乾燥オアシス砂漠移行帯における生態系タイプ間の植物および微生物源からの土壌有機炭素蓄積の相違 Divergent soil organic carbon accrual from plant and microbial sources across ecosystem types in a hyper-arid oasis-desert ecotone

Zhihao Zhang, Guangxing Zhao, Waqar Islam, Corina Graciano, Jingming Yan, Xinpinng Dong, Akash Tariq, Weiqi Wang, Fanjiang Zeng
Agriculture, Ecosystems & Environment  Available online: 5 November 2025
DOI:https://doi.org/10.1016/j.agee.2025.110075

Highlights

  • Hyper-arid wetlands store more SOC dominated by fungal necromass.
  • Paddy SOC is less stable due to plant-derived C dominance.
  • Microbial N-limitation alleviation drives SOC accumulation via Y-strategy.
  • Soil salinity suppresses microbial necromass accumulation.
  • N/P ratio and available N are key drivers of microbial necromass accrual.

Abstract

Soil organic carbon (SOC) dynamics in hyper-arid ecosystems are governed by allocation shifts between plant- and microbial-derived carbon (C). However, the underlying mechanisms governing these dynamics under land-use change remain poorly quantified. To address this, lignin phenols, amino sugar biomarkers, and microbial functional trait analysis were integrated to evaluate how microbial life-history strategies and environmental stressors regulate SOC accumulation across three ecosystem types (natural wetlands, paddies, and desert-steppes) in oasis-desert ecotones of the Taklamakan Desert. Natural wetlands exhibited the highest SOC (4.15 g kg-1) content, with 19.9 % derived from microbial necromass—primarily fungal component—due to alleviated nitrogen limitation [higher nitrogen/phosphorus (N/P) ratio: 0.928] and dominance of microbial growth-yield (Y) strategies. In contrast, paddies (SOC content: 2.57 g kg-1) exhibited the highest plant-derived C contribution (28.7 % of SOC), where plant-derived C was negatively correlated with SOC content, likely driven by C limitation and priming effects under reduced microbial Y-strategist abundance. Desert-steppes (SOC content: 3.44 g kg-1) showed minimal microbial necromass accumulation (6.1 % of SOC) and advanced lignin oxidation (elevated syringyl/vanillyl and cinnamyl/vanillyl), reflecting drought-induced depletion of Y-strategists and incomplete decomposition. Soil salinity was observed to suppress microbial necromass input, while N-P stoichiometry and available N facilitated its accrual. Collectively, our findings indicate a stability dichotomy: wetlands sustain persistent SOC through microbial necromass enrichment, whereas agricultural conversion shifts SOC toward plant-derived C prone to destabilization. Strategies for SOC conservation in hyper-arid oasis-desert ecotones should prioritize the preservation of natural wetlands coupled with implementation of balanced N-P fertilization in anthropogenically managed ecosystems (e.g., paddies). This integrated approach enhances microbial contributions to SOC resilience under ongoing land-use changes.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました