より自然な軟骨を設計する研究(Researchers aim for designing more nature-like cartilage)

ad

2025-11-21 ワシントン州立大学(WSU)

ワシントン州立大学の研究チームは、関節損傷に対する新たな治療戦略として、「生体軟骨に肉薄する人工軟骨」の設計に取り組んでいる。骨髄から採取した幹細胞を、専用バイオリアクター内で培養して軟骨細胞へと分化させ、さらに軟骨組織特有の生化学的マトリックスと機械的特性(圧縮耐性、摩擦低減など)を模倣する試作が行われている。研究では、細胞の分化促進・マトリックス形成・生体統合性を高めるために、動的機械刺激や適切な支持材構造を導入しており、骨・軟骨接合部への接着性改善や長期耐久性も視野に入れている。この成果は、変形性関節症や軟骨損傷治療において、現在主流の補綴や人工材料とは異なる、より「生体模倣型」の再生医療素材を提供する可能性がある。今後、動物モデルやヒトへの応用を目指し、量産性・安全性・長期機能維持などが課題となる。

より自然な軟骨を設計する研究(Researchers aim for designing more nature-like cartilage)
WSU scientists have engineered an artificial cartilage, using stem cells from bone marrow. (WSU photo)

<関連情報>

段階的流体せん断環境が間葉系間質細胞の軟骨形成運命に及ぼす影響 Effects of a Gradated Fluid Shear Environment on Mesenchymal Stromal Cell Chondrogenic Fate

Terreill J. Robertson II,Alec W. Schuler,Pakkanpat P. Pondipornnont,Ryan R. Driskell,Lawrence J. Bonassar,Arda Gozen,Wenji Dong,David B. Thiessen,and Bernard J. Van Wie
ACS Biomaterials Science & Engineering  Published: October 7, 2025
DOI:https://doi.org/10.1021/acsbiomaterials.5c01183

Abstract

Recreating articular cartilage trilayered patterning for an engineered in vitro cell construct holds promise for advancing cartilage repair efforts. Our approach involves the development of a multichambered perfusion tissue bioreactor that regulates fluid shear stress levels similar to the gradated hydrodynamic environment in articular cartilage. COMSOL modeling reveals our tapered cell chamber design will produce three different shear levels, high in the 22–41 mPa range, medium in the 4.5–8.4 mPa range, and low in the 2.2–3.8 mPa range and distributed across the surface of our mesenchymal stromal cell (MSC) encapsulated construct. In a 14-day bioreactor culture, we assess how the fluid shear magnitude and cell vertical location within a 3D construct influence cell chondrogenesis. Notably, Sox9 expression for MSCs cultivated in our reactor shows spatially patterned gene upregulations that encode key chondrogenic marker proteins. Beginning with the high shear stress region, lubricin and type II collagen gene increases of 410- and 370-fold indicate cell movement toward a superficial zone archetype, which is further supported by histological and immunohistochemical stains illustrating the formation of a dense proteoglycan matrix enriched with lubricin, versican, and collagen types I and II molecules. For the medium shear stress region, high aggrecan and type II collagen gene expressions of 2.3- and 400-fold, respectively, along with high proteoglycan analysis, show movement toward a superficial/midzone cartilage archetype. For low shear stress regions, higher collagen type II and X gene upregulations of 550- and 8300-fold, the latter being 2× of that for the high shear regime, indicate cell movement toward deep zone characteristics. Collectively, biochemical analysis, histology, and gene expression data demonstrate that our fluid shear bioreactor induces formation of a stratified structure within tissue-engineered constructs, demonstrating the feasibility of using this approach to recapitulate the structure of native articular cartilage.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました