血液近赤外分光定量分析の精度を高める新統合法を開発(New Integrated Method Boosts Accuracy of Blood Near-infrared Spectroscopy Quantitative Analysis)

ad

2025-09-19 中国科学院(CAS)

中国科学院合肥物質科学研究院と中国科学院合肥がん病院の研究チームは、近赤外分光法(NIRS)を用いた血中ヘモグロビン濃度の定量精度を大幅に向上させる新手法を開発した。全血測定では、水の強い吸収や散乱、装置ノイズによりHbの微弱信号が埋もれる課題があった。本研究では、ウェーブレットパケット‐ファジー縮小(WPT-FS)による多段階ノイズ除去と、群知能に基づくクジラ最適化アルゴリズムを統合し、Hbに富む特徴成分を高精度に抽出した。106試料での検証では予測誤差が低減し、R²=0.97以上を達成した。非侵襲で信頼性の高い血液分析法として医療応用が期待される。

血液近赤外分光定量分析の精度を高める新統合法を開発(New Integrated Method Boosts Accuracy of Blood Near-infrared Spectroscopy Quantitative Analysis)
Core parameter determination and Hb-related node reconstruction results (Image by HAN Xin)

<関連情報>

全血NIRS定量分析の精度向上のためのウェーブレットパケットファジーシュリンクノイズ除去モデルに基づくヘモグロビン特徴抽出 Hemoglobin feature extraction based on wavelet packet-fuzzy shrinkage denoising model for improving the accuracy of whole blood NIRS quantitative analysis

Renjie Fang, Jialiang Wang, Xin Han, Xiangxian Li, Jingjing Tong, Minguang Gao, Xiang Huang, Hongzhi Wang
Biomedical Signal Processing and Control  Available online: 9 September 2025
DOI:https://doi.org/10.1016/j.bspc.2025.108550

Highlights

  • Novel Hybrid Approach: Combines WPT-FS denoising with WOA to enhance NIRS analysis of hemoglobin.
  • Innovative Denoising Strategy: Uses adaptive fuzzy shrinkage to reduce noise in NIRS data.
  • Optimized Feature Extraction: WOA reorganizes wavelet nodes to isolate key Hb spectral features.
  • Robust Quantitative Modeling: Achieves PLS model with RMSEP of 2.0409 and R2 of 0.9746, outperforming conventional methods.
  • Clinical Potential: Enables rapid, non-destructive Hb quantification in blood samples for diagnostics.

Abstract

This study introduces a hybrid model that integrates wavelet packet-fuzzy shrinkage denoising (WPT-FS) with the whale optimization algorithm (WOA) to enhance the measurement accuracy of near-infrared spectroscopy (NIRS) for the quantitative analysis of hemoglobin (Hb). First, a novel threshold denoising function is proposed, which employs the fuzzy shrinkage of wavelet packet coefficients to significantly mitigate noise interference in NIRS data. Subsequently, the denoised wavelet packet nodes are optimized using the WOA to reorganize the nodes that correspond to the Hb information band. Finally, a partial least squares regression (PLS) model is developed for the reconfigured spectrum. Actual blood data analysis demonstrates that this method outperforms the traditional preprocessing techniques in effectively capturing Hb spectral features, and yields a root mean square error of prediction (RMSEP) of 2.0409 and a coefficient of determination (R2p) of 0.9746. These findings suggest that the proposed method substantially enhances the accuracy and precision of quantitative analyses of Hb in near-infrared spectra, offering a novel solution for blood spectroscopic analysis.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました