脳の記憶メカニズムを解明する実験的証拠を提示(Study Provides Experimental Evidence for Uncovering Brain Memory Mechanisms)

ad

2026-01-05 中国科学院(CAS)

中国科学院現代物理研究所と蘭州大学の研究チームは、脳の記憶形成メカニズム解明と新型ニューロモルフィック計算に資する重要な実験的証拠を示した。生体シナプスが示すメモリスタ的特性に着想し、バイオ模倣ナノチャネルにおいて二価イオン遮蔽効果とpH駆動脱プロトン化という二つの刺激機構により、イオン輸送のヒステリシス(履歴特性)を実証した。蘭州重イオン研究装置(HIRFL)で作製したナノポアは、短期・長期増強や対パルス促進・抑圧などのシナプス機能を再現。さらに動的なシナプス重み符号化により、手書き数字認識で94.6%の精度を達成し、固体メモリスタに匹敵する性能を示した。

<関連情報>

ニューロモルフィックコンピューティングのためのナノ流体メモリスタにおける対称性の破れたメモリ効果 Memory Effects With Broken Symmetry in Nanofluidic Memristor for Neuromorphic Computing

Muhammad Jahangeer, Jinlong Guo, Zhaoyang Qin, Chenyu Li, Wenjing Liu, Can Zhao, Wenchang Zhou, Hongjin Mou, Ruqun Wu, Cheng Shen, Linyan Fu, Baobei Li, Muhammad Junaid …
DOI:Advanced Functional Materials

ABSTRACT

Memory and learning in biological systems arise from ion transport across nanoscale synaptic junctions in neural networks. These junctions act as a natural memristors and thus, reproducing this effect in artificial aqueous systems is crucial for mimicking neural functions and advancing neuromorphic computing. Herein, we successfully demonstrated the memristive effects through the spatial confinement of water and ions within a biomimetic nanochannel, using two distinct stimulation mechanisms (i) divalent-ion screening and (ii) pH-driven deprotonation. In both cases, broken symmetry within the medium coupled with surface effects, lead to hysteretic ion transport. This nanofluidic memristor also emulated biological memory features, including both short/long-term potentiation and key synaptic functionalities, such as paired-pulse facilitation (PPF) and paired-pulse depression (PPD). The reversible modulation of ionic conductance of our nanofluidic device enabled dynamic encoding of synaptic weights, a key mechanism underlying adaptive learning behavior in neuromorphic systems. Leveraging this property, a three-layer artificial neural network for pattern recognition is trained and recognition accuracy of 94.6% on the small-digit MNIST dataset, which can compete with the performance of many solid-state memristive synapses. The memory effect resemblance between our single-channel system to biological counterparts, paves the way for elucidating the origin of memory in biological systems and advancing nanofluidic memristor-based neuromorphic computing.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました