パーム油からデザイナー酵素へ:酵母細胞の再プログラム化に成功(From Palm Oil to Designer Enzymes: Frankfurt Researchers Reprogram Yeast Cells)

ad

2026-01-12 ゲーテ大学

本記事は、フランクフルト大学の研究チームが、酵母細胞を再プログラムすることで、パーム油由来脂肪酸などを原料に高付加価値の「デザイナー酵素」を生産する新技術を開発した研究を紹介している。研究者らは、酵母の代謝経路を精密に改変し、本来は微量しか生成されない特殊脂肪酸や酵素前駆体を効率よく合成できるようにした。この手法により、工業用酵素や医薬・化学産業で利用可能な機能性分子を、再生可能資源から持続的に生産する道が開かれる。特に、酵素の性質を目的に応じて設計・最適化できる点が特徴で、従来の化学合成に比べて環境負荷を大幅に低減できる可能性がある。本研究は、合成生物学と代謝工学を融合させた成果であり、バイオものづくりの新たな基盤技術として期待されている。

パーム油からデザイナー酵素へ:酵母細胞の再プログラム化に成功(From Palm Oil to Designer Enzymes: Frankfurt Researchers Reprogram Yeast Cells)
Schematic representation of biosynthesis in a cell (top) and in the laboratory (bottom). The designer enzyme shortens the chain length of the fatty acid (Image: Felix Lehmann & Martin Grininger/Goethe University).

<関連情報>

後生動物の脂肪酸合成酵素を改変し、鎖長を制御して酵母に適用 Engineering metazoan fatty acid synthase to control chain length applied in yeast

Damian L. Ludig,Xiaoxin Zhai,Alexander Rittner,Christian Gusenda,Maximilian Heinz,Svenja Berlage,Ning Gao,Adrian J. Jervis,Yongjin J. Zhou  &Martin Grininger
Nature Chemical biology  Published:07 January 2026
DOI:https://doi.org/10.1038/s41589-025-02105-w

Abstract

Metazoan fatty acid (FA) synthases (mFASs) facilitate the de novo synthesis of C16- and C18-FAs through iterative extensions within the FA cycle and hydrolytic release. Here we re-engineer mFAS to fine-tune the interplay between FA extension and FA hydrolytic release for the targeted production of short- and medium-chain fatty acids. Single amino acid exchanges in the ketosynthase domain can redirect FA product profiles from predominantly C8 (G113W) to C8/C10 (G113F) and C12/C14 (G113M). Integration of a thioreductase domain enables the production of medium-chain fatty aldehydes and alcohols. We apply our approach for controlling chain length in FA biosynthesis to the microbial production of C10- and C12-FAs, translate it into a yeast cell factory and achieve C10/C12-FAs titers of 674 mg l-1 and 67% purity of total free FAs. Our work demonstrates a modular platform for programmable FA synthesis and paves the way toward sustainable bioproduction of valuable oleochemicals.

 

2-ピロンポリケチドの区画化生産のためのマウス脂肪酸合成酵素由来の多酵素の設計 Design of a Multienzyme Derived from Mouse Fatty Acid Synthase for the Compartmentalized Production of 2-Pyrone Polyketides

Felix Lehmann, Nadja Joachim, Carolin Parthun, Prof. Martin Grininger
Angewandte Chemie International Edition  Published: 17 November 2025
DOI:https://doi.org/10.1002/anie.202511726

Abstract

Compartmentalizing biosynthetic pathways is a key objective in protein engineering, particularly in synthetic biology and metabolic engineering. It can improve catalytic efficiency, stabilize reactive intermediates, reduce by-product formation, and, beyond these advantages, enable synthetic complexity by coordinating multistep pathways. In this study, we established a chemoenzymatic platform for producing 2-pyrones—specifically styrylpyrones and hispidin—within a multienzyme based on a non-reducing (nr) variant of the murine fatty acid synthase (FAS), which naturally produces palmitic acid. By introducing two amino acid substitutions in the ketosynthase (KS) domain, we enhanced the nrFAS-mediated synthesis of styrylpyrones from non-native substrates, including halogenated derivatives. The engineered enzyme exhibited a 66-fold increase in activity compared to the non-mutated nrFAS, surpassing the styrylpyrone synthase of the kavalactone pathway in Piper methysticum. Additionally, we integrated a 4-coumarate ligase (4CL1) loading module into the compartment using the SpyTag/SpyCatcher system, enabling the activation and direct transfer of cinnamic acid derivatives to the nrFAS. The resulting styrylpyrones are direct precursors of pharmaceutically active kavalactones, while hispidin serves as the precursor of fungal bioluminescence.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました